
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-023-05375-0

1 3

Reducing branch divergence to speed up parallel execution
of unit testing on GPUs

Taghreed Bagies1 · Wei Le2 · Jeremy Sheaffer2 · Ali Jannesari2

Accepted: 3 May 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2023

Abstract
Software testing is an essential phase in the software development life cycle. One of
the important types of software testing is unit testing and its execution is time-con-
suming and costly. Using parallelization to speed up the testing execution is benefi-
cial and productive for programmers. To parallelize test execution, researchers can
use GPU machines. In GPU applications, multiple threads execute in parallel within
a group known as a warp. Branch divergence affects the performance of a warp neg-
atively when some threads run a branch, and the other threads are idle waiting for
the first set of threads to finish their execution. In this paper, we propose a novel
algorithm to minimize branch divergence when testing an application on a GPU. We
arrange test inputs based on the warp size of a GPU machine. Test inputs that have
similar control flow paths are grouped within the same warp executing in parallel.
Thus, the branch divergence is minimized per warp. We validate and evaluate our
algorithm on six benchmarks (57 programs in total). Our approach accelerates the
testing execution by up to 3.8x and improves the warp execution efficiency by up to
15x.

Keywords  Software testing · Testing in parallel · Branch divergence · CUDA ·
GPUs

 *	 Taghreed Bagies
	 tbagies@kau.edu.sa

	 Wei Le
	 weile@iastate.edu

	 Jeremy Sheaffer
	 sheaffer@iastate.edu

	 Ali Jannesari
	 jannesar@iastate.edu

1	 King Abdulaziz University, Jeddah, Saudi Arabia
2	 Iowa State University, Ames, IA, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05375-0&domain=pdf

	 T. Bagies et al.

1 3

1  Introduction

In the software development life cycle (SDLC), software testing is an important
phase and involves 50% of the SDLC, which is time-consuming [1–3]. According
to [4], one of the main goals of software testing is to discover program defects
before it is put into use. One process of defect testing is unit testing which is the
process of testing individual components in isolation. Units may be individual
functions. When we apply unit testing, we execute a program using artificial data
(test inputs) [4]. However, executing software testing on an application could
require seven weeks [5]. Therefore, running software testing in parallel can sig-
nificantly speed up test execution time [6, 7].

To execute software testing in parallel, some studies use distributed execu-
tion environments such as cloud computing or virtual machines (VMs) [6, 8–14].
However, distributed environments are costly with respect to maintenance, energy
consumption, and time scheduling for a shared resource [1]. Therefore, two stud-
ies use GPUs to parallelize test execution.

When parallelizing the test execution on GPU machines, test inputs will be
distributed on multiple threads [1, 15]. Each test input should follow a control
flow path of the program under test. Each thread executes a test input, leading to
the parallel execution of the program test. However, a control flow path may dif-
fer from one test input to another by an instruction in the program under test due
to a branching instruction. Hint, each thread may execute different instructions
from other threads.

A phenomenon known as branch divergence occurs when threads in a group
encounter a branching instruction, not all threads take the same control flow path,
which negatively affects the parallelization of test execution on GPU machines.
In a GPU, a number of threads execute in parallel within a group known as warp.
When parallelizing test execution on a GPU, each test input is executed by a
thread with a different control flow path leading to divergent instructions between
threads. The execution of divergent instructions will be serialized [1] such that
some threads are inactive, waiting for other threads to finish their execution. As
a result, the branch divergence among threads in a warp increases the overall test
execution time.

To address branch divergence in GPU general applications, some researchers
have proposed methods that change the source code of an application [16–28].
These proposed methods are not applicable for software testing since we must not
change the source code for a program under test.

In this paper, we propose a novel algorithm to minimize the branch diver-
gence among threads per warp to test a program in parallel using a GPU machine.
Essentially, we collect the branch traces of the program from its test inputs. Then,
we generate a similarity matrix (a complete graph) for each pair of test inputs
by utilizing Euclidean distance. After that, we build the minimum spanning tree
(MST) of the complete graph. If the number of connected nodes in the gener-
ated MST is greater than or equal to the size of a warp in a GPU, we sort the
connected nodes based on the weights of their edges. We use the warp size to

1 3

Reducing branch divergence to speed up parallel execution…

determine the number of sorted nodes to store in a bucket and remove from the
complete graph. We repeat this step until the graph is empty. The result of this
step is a list of buckets, each with a fixed size (warp size) of test inputs. From
these buckets, we produce a set called arranged test inputs (ATI) that can be used
to test a program with minimal branch divergences.

We evaluate the algorithm on six different benchmarks, including 57 programs
in total. The results show that our algorithm speeds up the testing execution of four
out of six benchmarks up to 3.8x. It also improves the warp execution efficiency up
to 31.98 threads/warp and warp non-predicated execution efficiency up to 99.98%.

In summary, this paper makes the following contributions:

•	 A novel algorithm to arrange the test case inputs reducing the branch divergence
within a warp on GPUs,

•	 An algorithm to generate traces from source code that could be used for multiple
software testing purposes,

•	 Empirical evaluations on different domains of benchmarks for correctness and
performance improvement, and their results.

This paper is organized as follows: Sect. 2 provides background information related
to GPU machines. Section 3 explains a motivation example of how branch diver-
gence emerges in test execution on GPUs. Section 4 presents the literature review.
Section 5 describes the algorithm of reducing branch divergence. In Sect. 6, we
describe how we evaluate the algorithm. Section 7 analyzes the results. Section 8
is the discussion. Section 9 highlights threats to validity. Section 10 concludes and
highlights future work.

2 � Background information

To parallelize the test execution on GPU machines, testers need to write a test driver
by using a GPU programming model and distribute test inputs on multiple threads
[1, 15]. These threads will be executed within a warp. To understand the concept of
threads and blocks on GPUs as well as GPU warp, this section provides essential
information regarding GPUs and their programming models.

2.1 � GPU: programming models

A tester can use CUDA programming models to implement a test suite on GPUs.
CUDA is a general-purpose parallel computing platform and programming model
that leverages the parallel computing engine on GPUs to solve many complex com-
putational problems more efficiently than on a CPU. CUDA allows a developer to
define C++ functions known as kernels. When a kernel is called, it runs N times in
parallel by N different CUDA threads instead of only once, like regular C++ func-
tions [29].

	 T. Bagies et al.

1 3

2.2 � GPU: threads and blocks

According to Gupta [30], CUDA provides an abstraction of GPU architecture acting
as a bridge between an application and its possible implementation on GPU hard-
ware. In this abstraction, a group of threads is called a CUDA block. CUDA blocks
are grouped into a grid. A kernel is executed as a grid of blocks of threads.

Since all threads of a block are expected to reside on the same processor core and
must share the limited memory resources of that core, the number of threads per
block is limited. On current GPUs, a thread block may contain up to 1024 threads.
Nonetheless, a kernel can be executed by multiple equally shaped thread blocks. The
total number of threads is equal to the number of threads per block times the number
of blocks. Blocks are organized into a one-dimensional, two-dimensional, or three-
dimensional grid of thread blocks. Line#4 specifies the number of threads per block
and the number of blocks per grid [29].

Listing 1 shows a CUDA sample code that adds two vectors A and B of size N
and stores the result into vector C. A kernel is defined using the __global__ decla-
ration specifier (line#6). The number of CUDA threads that execute that kernel for
a given kernel call is specified using <<< ... >>> a new execution configuration
syntax (line#4). Each thread that executes the kernel is provided by a unique thread
ID accessible within the kernel through built-in variables (threadIdx in line#7). The
threadIdx variable is a 3-component vector. Thus, threads can be identified using
a one-dimensional, two-dimensional, or three-dimensional thread index, forming a
one-dimensional, two-dimensional, or three-dimensional block of threads, called a
thread block. This provides a natural way to invoke computation across the elements
in a domain such as a vector, matrix, or volume [29].

2.3 � GPU warp

A GPU architecture is built around a scalable array of multithreaded streaming
multiprocessors (SMs). A multiprocessor is designed to execute hundreds of
threads concurrently. GPUs employ a unique architecture called SIMT (single-
instruction, multiple-thread) to manage a large number of threads. In SIMT, a
multiprocessor creates, manages, schedules, and executes threads in groups of 32

1 3

Reducing branch divergence to speed up parallel execution…

parallel threads called warps. Individual threads start together at the same pro-
gram address in a single warp, but they have their instruction address counter
and register state. Therefore, a group of threads is free to branch and execute
independently. The term warp originates from weaving, the first parallel thread
technology [29].

When a multiprocessor is given one or more thread blocks to execute, it partitions
them into warps. Each warp gets scheduled by a warp scheduler for execution. The
way a block is partitioned into warps is always the same; each warp contains threads
of consecutive, increasing thread IDs, with the first warp having thread 0 [29].

As shown in Fig. 1, a programmer specifies 15 blocks and 64 threads per block
when calling a kernel. A block is divided into warps (groups of 32 threads). A
warp is the scheduled unit. The threads of the same block are executed in a given
core warp by warp in a SIMD (single-instruction, multiple-data) fashion.

Fig. 1   An example of GPU blocks,threads, and warps

	 T. Bagies et al.

1 3

A warp executes one instruction at a time. Thus, full efficiency is realized when
all 32 threads of a warp agree on their execution path. If threads of a warp diverge
via a data-dependent conditional branch, the warp executes each branch path taken,
disabling threads that are not on that path. Branch divergence occurs only within a
warp; different warps execute independently regardless of whether they are execut-
ing common or disjoint code paths [29].

3 � Motivation example

A GPU has been used as an accelerator for different applications [31] and applied
in software testing [1]. It achieves high performance by taking advantage of a warp
executing a group of threads in single-instruction, multiple-thread fashion [32]. The
group of threads within a warp must execute the same instruction at the same time.
In other words, threads cannot diverge within a warp because branch divergence will
result in serial execution, which can result in a significant performance loss [33].

Figure 2 shows an example to test a program on a GPU machine. There are eight
test inputs distributed in eight threads within a warp. When executing the if–else
statement, four threads execute the if part (A and B) whereas the other four threads
execute the else part (C and D). The warp executes the if part and then proceeds to
the else part. While executing the if part, all threads (of test#1-test#4) are inacti-
vated. When execution proceeds to the else part, all threads (of test#5-test#8) are
inactivated. Therefore, the if and else parts are executed sequentially not in parallel.

Our main purpose is to reduce the number of inactive threads per warp by arrang-
ing test inputs such that test inputs that have similar control flow paths should be
grouped in the same warp. Test inputs that have dissimilar control flow paths should
be executed in different warps. As a result, the number of inactive threads per warp
will be reduced and eventually improve the performance of testing.

If we arrange the test inputs to reduce branch divergence, these arranged test
inputs could be used several times during the SDLC. The test execution is repeated
several times when a change is made to a program to fix a bug [34, 35]. Chang-
ing source code does not usually require changing its corresponding test because

Fig. 2   An example of a control flow divergence problem when parallelizing unit testing on a GPU
machine

1 3

Reducing branch divergence to speed up parallel execution…

there is a weak correlation between the two [36]. According to Rothermel et al. [37],
developers often save the tests they develop for their program to reuse later as the
program evolves.

4 � Related work

The previous literature related to parallel software testing falls into four categories:
(1) parallel test execution on a GPU by implementing a test suite using a GPU pro-
gramming model and reading test case inputs from a file, (2) parallel test suite exe-
cution (e.g., using an existing framework such as JUnit) in cloud computing or VMs,
(3) parallel test suite execution in a multicore CPU, and (4) parallel test generation.
For branch divergence in GPU applications, the previous literature falls into two cat-
egories: (1) hardware-based techniques, and (2) software-based techniques.

Our study is related to the first category. The most related work implements a
test suite that reads test inputs from a file and uses GPU machines to run the testing
in parallel [1, 15]. In [15], they use CUDA to implement a test driver and run it in
parallel for embedded software. Yaneva et al. [1] propose a compiler-assisted frame-
work to automatically generate an OpenCL code from a C sequential program and
execute the tests in parallel on a GPU machine. Both studies use EEMBC (an auto-
motive benchmark) for evaluation and highlight the control flow divergence issue
as a topic for future work. In this paper, we address this problem and propose an
algorithm to arrange test inputs reducing the branch divergence per warp such that
it decreases the number of inactive threads per warp. It improves the warp execution
efficiency that should speed up the process of unit testing on GPUs. To evaluate our
algorithm, we use EEMBC benchmark used in [1, 15] in addition to benchmarks
from other domains.

With regard to the second category, some researchers use cloud computing or
VMs to execute a test suite in parallel [6, 8–14]. However, a test suite may con-
tain an order-dependent test [38]. This could affect the results when parallelizing the
execution of a test suite [39]. Therefore, some researchers have proposed algorithms
and studied the impact of these dependencies when applying parallelization in a test
suite on cloud or VMs [7, 39, 40]. On the contrary, we use GPU machines and an
existing test inputs set. Each test input represents a possible value that can be used to
test a program. Each test input will have a different control flow path coverage from
the other test inputs. When we parallelize the test execution, we distribute test inputs
on different threads. There will be no shared data between different threads, so there
is no dependency between different test inputs.

The third category is parallel test execution on a multicore CPU [41]. They
presented a parallel implementation of the adaptive testing (AT) technique that
improves the efficiency of traditional random/partition testing. Unlike their
approach, our study compares the use of a single computer of multiple threads with
a GPU for parallel test execution. We focus on addressing the problem of branch
divergence to decrease test execution time on a GPU.

The last category in parallel software testing is related to parallel test genera-
tion [42, 43]. The studies in this category are different from our work in that they

	 T. Bagies et al.

1 3

produce algorithms that use Korat (an existing tool for test generator) and run in par-
allel to generate test inputs, whereas we use existing test inputs (generated by devel-
opers/tools) and arrange them to parallelize the test execution in a GPU machine.

With regard to branch divergence in GPUs’ applications, some researchers pro-
pose hardware-based techniques [44–53]. Although these techniques are able to
minimize the branch divergence for general-purpose GPU applications, they require
hardware support. However, our study addresses branch divergence for parallel test
execution without requiring changing GPU hardware configurations.

Other researchers introduce software-based techniques to handle branch diver-
gence in general-purpose GPU applications [16–28]. However, these techniques
require changing source code to make it run in parallel. In software testing, it is
required to not change the source code of an application. Therefore, these techniques
could not be applied to handle branch divergence in parallel test execution on a
GPU.

To the best of our knowledge, this is the first work on minimizing branch diver-
gence to speed up the execution of testing on GPU machines.

5 � Approach

When testing a program on GPUs, a single warp should execute similar control flow
paths of test inputs to reduce the branch divergence. In other words, a warp should
run a cluster of test inputs that have similar control flow paths. Each cluster must
contain 32 test inputs (the warp size). Although we can consider branch divergence
concerning test execution on GPUs as a clustering problem, most of the clustering
algorithms do not specify the number of elements in each cluster. Therefore, we pro-
pose a new algorithm that groups different test inputs based on their control flow
paths into a number of clusters. Each group has 32 test inputs.

Figure 3 shows an overview of our approach. First, we use existing test inputs to
generate branch traces of a tested program. Since the branch divergence happens at
the source code level, our clustering algorithm uses the source code to trace the con-
trol flow path of each test input. Branches (if statements and number of loop itera-
tions) are the basic unit that differs a control flow path of a single test input from the
others. To trace, we use a vector of branches in a source code and count how many a
branch occurs for each test input.

Fig. 3   Steps of the overview of the approach

1 3

Reducing branch divergence to speed up parallel execution…

Then, we compute the Euclidean distance of each pair of branch traces, which
produces the similarity matrix. A clustering algorithm usually uses a matrix to
find similarities between points, such as cosine similarity and Euclidean distance.
Euclidean distance accounts for magnitude while cosine distance does not [54, 55].
Since the magnitude of the vectors (branches in the source code) is critical, our algo-
rithm uses the Euclidean distance measurement. As a result, the algorithm builds the

	 T. Bagies et al.

1 3

traces of each test input based on their source code branches and calculates the simi-
larity matrix using the Euclidean distance between each pair of test inputs.

We consider the similarity matrix a complete undirected graph to group the simi-
lar test inputs in a cluster. In the graph, each node represents an ID of a test input.
Since an MST of an undirected graph is a connected subgraph covering all the graph
nodes with the minimum possible number of edges (distances), the last step of our
algorithm is to divide the complete graph into several MSTs.

At each iteration of creating an MST, if the number of connected nodes in the
MST is equal to or greater than the warp size (32 threads/warp in GPUs [56]), we
sort these connected nodes. Then, we remove the first 32 connected nodes from the
graph and store them in a bucket. Each bucket has a fixed number of test inputs
(32). We repeat generating an MST, finding the 32 connected components, remov-
ing them from the graph, and storing them in a new bucket until the graph is empty.
Note that the smaller the distance between nodes, the more similar their control flow
paths are.

As a result, there will be several buckets, each with a fixed number of test inputs.
The number of buckets equals the number of test inputs divided by the number of
test inputs in each bucket. A warp will execute each bucket in a GPU machine. In the
end, a group of 32 test inputs will be executed by a group of 32 threads/warp. We
summarize our approach in Algorithm 1. We will discuss each step in detail in the
following sections.

5.1 � Branch traces generator

For each test input of a program under test, we collect traces of its control flow path
with respect to branches. The two important factors to distinguish one test input
from the others in terms of branches are: (1) which branches are executed by a test
input, and (2) in which order those branches are executed (e.g., branch#4 executes
before branch#5 for test#1, branch#3 executes before branch#5 for test#2).

To represent which branches are executed for each test input, we use 2D arrays
(line#4) such that the row represents the number of test inputs and the column repre-
sents the total number of branches in a program under test. The number of branches
is collected statically from a program under test, so it is a fixed number for all test
inputs (line#3).

To keep track of the order of branches, we use a counter variable. For each test
input, we initialize the counter with zero (line#6). Each time a branch is executed,
we increment the counter and assign its value to the array’s element of the branch
(line#16). Note that the counter variable will have different values for different test
inputs.

In a GPU machine, each warp should execute the same function under test with
different test case inputs. Since having different tested functions per warp will
increase its branch divergence, we should add a bigger weight for a branch having
a function call than other branches. The value of the counter helps to indicate the
biggest value a branch has. We keep track of the maximum value of a counter from
different test inputs by using the max variable (line#2,19). Since the value of max

1 3

Reducing branch divergence to speed up parallel execution…

is unknown until the last test input executes, we assign a negative one to the visited
element of a branch having a function call (line#13). After executing all test inputs,
the value of this branch will be the total number of branches multiplied by the maxi-
mum value of the counter (line#22, 23). As a result, the weight of this branch will be
the biggest value among other branches.

The input of this step is the source code of a program under test, test inputs, and
the number of test inputs. The output is the 2D array (traces) of the size number of
test inputs times the number of branches. Each row contains numbers representing
how many times a branch has been visited by a test input. Table 1 shows an example
of the output from this step.

5.2 � Similarity matrix producer

From the previous step, we have a 2D array indicating how many times a branch has
executed for each test input. We use this array to build the similarity matrix. The
distance between each pair of test inputs is important. For example, the test input#1
takes branch A and branch B. The test input#2 takes branch B and branch C. The
test input#3 takes branch C and branch D. The test input#1 is similar to test input#2
by taking branch B, and test input#2 is similar to test input#3 by taking branch C.
However, the test input#1 and #3 are dissimilar. Therefore, the similarity matrix will
be beneficial to take care of this situation.

We utilize the Euclidean distance to compute the distance between each pair
of test inputs (line#29). For instance, we compute the distance between (input#1,
input#2), (input#1, input#3), (input#2, input#3) and so on. Since the distance of
(input#1, input#2) equals to the distance of (input#2, input#1), we do not calculate
the distance twice (line#30). The below equation shows an example of the Euclidean
distance for input#1 and input#2 from Table 1.

Table 2 shows an example of the output result (the similarity matrix) of the values
shown in Table 1. The input of this step is the 2D array (Traces) generated from the
Branch Traces Generator step and the number of test inputs. The output of this step
is a matrix with the size of (number _ of _ test _ inputs)2.

EuclideanDist(input #1, input #2) =
√

(3e6 − 0)2 + (4e6 − 291)2 + (4e6 − 3e4)2 + (0 − 3e4)2 ≈ 6e6

Table 1   An example of the output of branch traces generator step for three test inputs. The number of
test inputs is 1024. The number of branches in a program under test is four. The value represents how
many times a branch executes

Input# Branch#1 Branch#2 Branch#3 Branch#4

1 3e6 4e6 4e6 0
2 0 291 3e4 3e4
3 0 0 98 3e4

	 T. Bagies et al.

1 3

5.3 � Buckets constructor

The previous step generates the similarity matrix representing a complete undi-
rected graph. Each node represents a test input, and the edges’ weight represents
the distance between nodes. The distance represents how similar one test input is
to the others in terms of its control flow paths.

5.3.1 � Minimum spanning tree (MST)

Utilizing the MST is beneficial to select similar test inputs. We use Kruskal’s
algorithm since it builds the MST by sorting the edges’ weights (distances) and
adds nodes based on the smallest weight of edges (line#43,50). This guarantees
that the generated MST at any given time has edges with the lowest weight. Note
that the smallest edge’s weight provides the most similar pair of test inputs.

As shown in Table 2, the edge’s weight between Input#1 and Input#2 is
6384314.5 whereas the edge’s weight between Input#2 and Input#3 is 29903.4.
Since the edges’ weights are ordered, the algorithm will add first the edge
between Input#2 and Input#3 to the MST. Note, Table 1 shows Input#2 is more
similar to Input#3 than to Input#1 (e.g., not executing Branch#1 and executing
Branch#4 for 3e4 times).

5.3.2 � Connected components

Since Kruskal algorithm builds the MST by adding the smallest edge’s weight in
each iteration, there might be several unconnected components. At the first itera-
tion, for example, it might add the edge between node#1 and node#3. In the sec-
ond iteration, it might add the edge between node#2 and node#4. There might not
be an edge between node#1 and node#2; or an edge between node#3 and node#2.
There might not be an edge between node#1 and node#4; or an edge between
node#3 and node#4. Thus, there are two unconnected components such that
node#1 and node#3 are similar but they are different from node#2 and node#4 at
this iteration of building the MST.

Therefore, at every iteration of adding a new edge to the MST, we examine
if it has connected components equal to the warp size because these connected
components represent test inputs that are similar in their control flow path.
They should be executed in the same warp. If the MST has a number of con-
nected components more than the warp size, we sort the connected components

Table 2   Similarity matrix
representing the distance
between a pair of test inputs for
Table 1

Test input Input#1 Input#2 Input#3

Input#1 0 6384314.535 6403133.296
Input#2 0 0 29903.41594
Input#3 0 0 0

1 3

Reducing branch divergence to speed up parallel execution…

by their edges’ weights and use only the first warp size connected components
(line#44,45).

5.3.3 � Buckets

When finding and sorting the connected components in the MST, we store the
first warp size nodes in a bucket (line#46). Then, we remove them from the graph
(line#47). We repeat the steps of building MST, checking the number of connected
components, putting nodes into buckets, and removing nodes from the complete
graph until the graph is empty (line#48,35). Note that when the number of connected
components is bigger than the warp size, the excess nodes will not be removed from
the graph; instead; they will be used in the second iteration of the algorithm.

In the end, we have a list of buckets such that the number of buckets is the num-
ber of test inputs divided by the warp size (line#36). Each bucket contains IDs of
test inputs that are grouped based on their similarity to the branch traces. An ID of a
test input helps to find the actual data of each test input. Thus, we use these buckets
to create ATI (line#40).

6 � Evaluation

To reduce the number of inactive threads per warp when testing a program on a
GPU, we consider the distance between different test inputs based on their control
flow divergences. Test inputs that have similar control flow paths will have a small
distance in terms of branches. The purpose of our algorithm is to arrange test inputs
by grouping similar test inputs based on their branch distance.

The evaluation of our algorithm is to answer the following Research Questions
(RQs):

1.	 RQ1: Is our algorithm valid and correct in clustering similar test inputs based on
their control flow paths?

2.	 RQ2: Is our algorithm able to speed up the test execution on a GPU machine?
(comparing the execution time of ATI and Random Test Inputs (RTI) with respect
to a sequential version.)

3.	 RQ3: Is our algorithm able to reduce the branch divergence? (measuring the
effectiveness of the approach by using (1) warp execution efficiency, (2) warp
execution non-predicated efficiency, and (3) stall memory dependency?

6.1 � Experimental design

The experiment aims to evaluate our algorithm that arranges test inputs of a pro-
gram based on their execution path (branch traces). We examine if our approach

	 T. Bagies et al.

1 3

correctly arranges a set of test inputs, decreases the execution time on GPUs com-
pared to CPUs, and reduces branch divergence. All the implementation and results
are available on our GitHub repository text.1

The first research question (RQ1) is to validate that our algorithm arranges test
inputs as expected. In other words, does our algorithm sort test inputs as excepted?
Does our algorithm lose any test inputs while sorting the test inputs? Does our algo-
rithm duplicate any test inputs?

To answer RQ1, we need three sets: (1) inputs set, (2) expected results set, and
(3) actual results set. Each set has the same 1024 test inputs (see Sect. 6.3) and is
divided into 32 groups. Each group contains 32 test inputs. The first set has unar-
ranged test inputs. The second set has well-arranged test inputs. The third set is cre-
ated by applying our algorithm to the first set and compared with the second set.

Since the arrangement is based on the control flow paths of test inputs, we can-
not know the well-arranged test inputs in advance. To guarantee the arrangement,
we will duplicate test inputs. We will construct the 1024 test inputs as follows:
(1) generate 32 test inputs (see Sect. 6.3 for how we generate test inputs) and (2)
repeat each test input 32 times. The first set (inputs set) has each group with differ-
ent test inputs, which guarantees that this set is not well arranged. In the second set
(expected results set), every group will have the same test inputs and consider well-
arranged test inputs. Then, we use our algorithm to arrange the first set and build
the third set (actual results set). We can conclude that our algorithm is capable of
arranging the set as expected by comparing the actual results set with the expected
results set.

To answer the second and third research questions, we select six different bench-
marks and generate two different sets of test inputs (Random and Arranged) for each
benchmark. RTI is generated randomly while ATI is generated by using our algo-
rithm. For each benchmark, we implement a test driver to test a benchmark on a
CPU and GPU machine. For a GPU machine, we run the test driver with ATI and
RTI.

For CPU, we use Intel®Xeon®Gold 6140 Processor and implement a test suite
in C. We use clock_gettime() [57] to measure the execution time in seconds. For a
GPU machine, we use NVIDIA Volta architecture Tesla V100. We implement the
test driver by using CUDA that is capable of programming multithreaded GPUs and
scales transparently to hundreds of cores [58]. We use cudaEventCreate() [59] to
calculate the execution time in seconds.

6.2 � Benchmark

A GPU is applicable to handle data-parallel computations such that it executes the
same program on many data elements in parallel [60]. In data-parallel processing,
we map data elements to parallel processing threads. To speed up the computations,

1  https://​github.​com/​tbagi​es/​GPU-​Branc​hDive​rgence.

https://github.com/tbagies/GPU-BranchDivergence

1 3

Reducing branch divergence to speed up parallel execution…

many applications processing large data sets can use a data-parallel programming
model such as CUDA in GPUs. Running program testing in parallel matches the
concept of data-parallel processing. To test a program, we need to execute it with
different test inputs several times. Therefore, GPUs are suitable to run testing in par-
allel such that each test input will be executed by a thread running concurrently.

Although some existing tools create a test suite for a specific programming lan-
guage, currently no tool can automatically generate a test suite in a data-parallel pro-
gramming model for a program implemented in C to be executed on a GPU. There-
fore, we design our experiment similar to the state of the art [15] and use CUDA that
is a widely used programming model in GPUs to implement a test suite for a list of
benchmarks written in C.

CUDA does not support some C standard libraries [60] and recursive function.
We cannot execute a program testing that deals with string or reads from a file and
writes to a file. We must not modify the source code of a program under test; we
must test it as it is provided. Unfortunately, these limitations do not allow us to use
large-scale applications. All the C real-world applications rely heavily on C standard
libraries (String, read from a file, Math library, etc.). Thus, we could not test our
algorithm with large-scale applications.

We consider these limitations and create a set of criteria to choose benchmarks.
The first criterion is that the source code of a tested program does not rely on the C
standard libraries such as string comparison. The second criterion is that inputs of a
program should be provided by its developer or easy to generate automatically. The
last criterion is that selected programs are different in their functions, input types,
number of inputs, and source code structure such as control flow. Table 3 summa-
rizes the list of selected benchmarks based on our criteria. Each benchmark includes
several programs that we consider as functions under test (FUT).

Polybench is a benchmark suite of numerical computations with static control
flow in various application domains such as linear algebra computations and data
mining. Its source code is available in [61] and it involves nested loops and handles
arrays with a different number of dimensions and computations. We choose two pro-
grams from different domains based on our criteria. In addition, we use EEMBC and
select the seven functions used by [1, 15].

We use GitHub which is a popular repository and an easy way to obtain source
code [62]. We choose Image Manipulation Application (IMA) since it has many
functions, many if statements, and a combination of "while" and "for" loops [63].
Also, we choose C-Sorting Library (SortLib) [64] to test our approach on an existing
library and evaluate the benefit of our approach to create the unit testing for libraries.
Additionally, we use two different benchmarks related to well-known algorithms:
graph algorithm (GAlg) [65] and dynamic programming (DynProg) algorithms [66].
We test only the functions that satisfy our criteria from these benchmarks.

6.3 � Test inputs

We use the warp size (32 in Tesla V100) to specify the number of threads (i.e., we
can have the minimum of 2n(n >= 5) . Since, in this GPU machine, the maximum

	 T. Bagies et al.

1 3

Ta
bl

e 
3  

L
ist

 o
f s

el
ec

te
d

be
nc

hm
ar

ks

Im
ag

e
m

an
ip

ul
at

io
n

ap
pl

ic
at

io
n

(I
M

A
)

C
-S

or
tin

g
(S

or
tL

ib
)

Po
ly

be
nc

h
D

yn
am

ic
 p

ro
gr

am
m

in
g

al
go

rit
hm

s
(D

yn
Pr

og
)

G
ra

ph
 a

lg
or

ith
m

s (
G

A
lg

o)
EE

M
B

C

So
be

l_
op

er
at

or
B

ub
bl

e
A

di
B

in
om

ia
l C

oe
ff

B
FS

A
2t

im
e0

1
Pr

ew
itt

_o
pe

ra
to

r _
3b

y3
ke

rn
el

Q
ui

ck
A

ta
x

M
at

rix
 C

ha
in

 O
rd

er
D

ijk
str

a
A

iff
tr0

1
Pr

ew
itt

_o
pe

ra
to

r _
5b

y5
ke

rn
el

M
er

ge
C

or
re

la
tio

n
Fi

bo
na

cc
i N

um
be

rs
Fl

oy
d

W
ar

sh
al

l
A

iiff
tt0

1
Ve

rti
ca

l_
op

er
at

or
O

dd
 E

ve
n

C
ov

ar
ia

nc
e

K
ad

an
e’

s A
lg

or
ith

m
M

ST
Id

ct
rn

01
H

or
iz

on
ta

l_
op

er
at

or
C

oc
kt

ai
l

D
ur

bi
n

K
na

pS
ac

k
Pu

w
m

od
01

D
ia

go
na

l_
co

m
pa

ss
_n

w
_o

pe
ra

to
r

C
om

b
Fo

ly
d_

m
ar

sh
ar

l
Is

-S
ub

se
t-S

um
R

sp
ee

d0
1

D
ia

go
na

l_
co

m
pa

ss
_n

e_
op

er
at

or
G

no
m

e
Ja

co
bi

-2
d-

im
pe

r
Lo

ng
es

t C
om

m
on

 S
ub

se
qu

en
ce

Tb
lo

ok
Ro

be
rts

_o
pe

ra
to

r
In

se
rti

on
Lu

dc
m

p
Ed

it
D

ist
an

ce
G

ra
di

en
t_

fil
te

r
Sh

el
l

Re
g_

de
te

ct
io

n
Eg

g
D

ro
pp

in
g

Pu
zz

le
In

cr
ea

se
_s

at
ur

at
io

n
Se

le
ct

io
n

Sy
rt2

k
O

pt
im

al
 S

tra
te

gy
 O

f G
am

e
In

cr
ea

se
_i

nt
en

si
ty

R
ad

ix
Lo

ng
es

t I
nc

re
as

in
g

Su
bs

eq
ue

nc
e

Pa
nc

ak
e

H
ea

p

1 3

Reducing branch divergence to speed up parallel execution…

number of threads per block is 1024 [56], the minimum number of test inputs could
be 1024 test inputs. Therefore, we use 1024 test inputs for each benchmark and dis-
tribute the 1024 test inputs in several blocks based on the warp size (32 threads/
warp). As a result, the number of threads per block is 32, while the number of blocks
is the number of test inputs (1024) divided by the number of threads per warp (32).

To generate a 1024 RTI, we use test inputs provided by a developer of each
selected benchmark. If a developer does not provide test inputs, we look at the speci-
fication of each program to generate the inputs. Table 4 shows how we generate the
test inputs for each selected benchmark. The output of this step is six sets of RTI
(i.e., each benchmark has its RTI).

To produce ATI for each selected benchmark, we apply our algorithm to each
RTI. The algorithm groups the 32 similar control flow paths of test inputs within
a bucket (block on a GPU machine). There are 1024 test inputs. Our approach will
produce 32 buckets executed within 32 blocks in parallel. Each has 32 test inputs
executed within 32 threads per warp in parallel. The output of this step is ATI for
each selected benchmark.

Table 4   Generating random test input set for each benchmark

Benchmark Steps

IMA (1) Selects images with different size from a local directory
(2) Specifies FUT
(3) Generates random numbers (inputs of FUT),e.g., the amount of rotation

SortLib (1) Generates random numbers of different array sizes
(2) Generates random numbers to be stored in the array
(3) Specifies FUT

Polybench (1) Generates random numbers of different array sizes
(2) Uses functions provided by the developer of the Polybench to generate floating point

numbers and stored them in the array
(3) Specifies FUT

DynProg (1) Generates random numbers of different array sizes
(2) Specifies FUT,
(3) Generates random data to be stored in an array data might be a letter or number depends

on FUT
GAlg (1) Generates different types of graphs with different number of nodes and edges by using

Python networkx: Complete, Dense, undirected, and directed graph
(2) Specifies FUT

EEMBC (1) Generates the input from the code provided by the developer of EEMBC
(2) Specifies FUT

	 T. Bagies et al.

1 3

6.4 � Test driver

For each selected benchmark, we implement two versions of a test driver. The first
version is the sequential version to run the test on a CPU machine by using C lan-
guage. The second version is to execute the test on a GPU machine in parallel by
using CUDA.

The test driver has three parts: (1) a data structure to store test inputs and output
results, (2) a function reader to read test inputs from a file, and (3) a function to
launch the unit testing. The first and second parts are the same in the two versions
(CPU and GPU).

6.4.1 � Data structure

To simplify reading the test case inputs, we use Array of Struct (AoS) to store each
input such that each member in the struct represents a data of a test input (similar
to [1]). If, for example, a program receives an integer number as an input, we create
a struct that has these input types (Listing 2 line#2–4). Also, we add the char vari-
able (action) to indicate which FUT will be executed (Listing 2 line#5). In the main
method, we create an array of size equal to the number of test inputs of this struct
(Listing 2 line#21).

Similarly, we define and declare AoS for the output values (Listing 2 line#8–10,
and line#22 respectively). We have two AoS for input and output similar to [1]. This

1 3

Reducing branch divergence to speed up parallel execution…

way reduces the amount of data that will be transferred from the device to the host.
For example, we will only transfer the array result from the device to the host mem-
ory instead of transferring all values of the variables from input and output struct.

6.4.2 � Test inputs reader

To read the inputs’ values, we implement a function called readingInput (Listing 2
line#12). It receives the inputData and outputData as arguments. Then, it reads an
input file that has test inputs’ values. Next, it stores the values of each test input in
the inputData as well as outputData.

6.4.3 � Launch test inputs

This is the main different part between the sequential (on a CPU machine) and the
parallel (on a GPU machine) versions. For the sequential version, we add a loop
iterating on the number of test case inputs. Inside the loop, we invoke all functions
under test. Listing 3 (line#2–9) shows an example of a test driver for functionA()
and functionB().

For the parallel (GPU) version, we specify the number of threads per block, as
well as the number of blocks per grid (Listing 4 line#2–3). As discussed above, the
number of threads is 32 (warp size) per block. Then, we allocate data in the device
memory and transfer the data from the host memory to the device memory (List-
ing 4 line#6–7). After that, we invoke the kernel with a specific number of threads
and blocks, as well as pass the test case inputs to the kernel (Listing 4 line#8). The
kernel executes all functions under test in a GPU and store the results in the AoS
of OutputData (Listing 4 line#15,18). Finally, we transfer the output data from the
device to the host (Listing 4 line#9).

	 T. Bagies et al.

1 3

Unlike the sequential version, there is no "for loop" in the CUDA version. The
kernel will distribute the test case inputs in different threads automatically according
to the number of blocks and threads (Listing 4 line#12). The first 32 test case inputs
will be assigned to 32 threads in a block. The second 32 test case inputs will be
assigned to another 32 threads in a different block and so on. Each thread will have
an ID number indicating which test input will be executed. Note that a group of 32
threads will be executed in a warp.

6.5 � Profiling

To measure the effectiveness of our approach, we use Nsight Compute CLI which is
a profiler tool introduced by NVIDIA [67]. It provides several metrics for the opti-
mization of CUDA applications.

The branch divergence is influenced by the number of inactive threads per warp.
To measure the efficiency of a warp, Nsight Compute CLI provides two important
metrics (warp execution efficiency and warp non-predicated execution efficiency). In
GPUs, many stall reasons cause a warp to be inactive—this is different from active
and inactive threads. The most related stall reason to our experiment is stall memory
dependency (provided by Nsight Compute CLI) because all selected benchmarks
have arrays. The high percentage of stall memory dependency has a negative impact
on the performance of a GPU application. Table 5 shows the definition of these met-
rics based on [68, 69].

6.6 � Static code analysis

To collect some statistical data and analyze the code of each benchmark stati-
cally, we use Sonargraph-Architect a general-purpose static analysis tool that can

1 3

Reducing branch divergence to speed up parallel execution…

be described as the swiss army knife for architects, quality analysts, and developers
[70]. Table 6 lists the metrics that we used. We only consider the measurement that
has different values among the selected benchmarks.

7 � Results

We execute each test driver of the selected benchmarks more than 20 times and
compute the average of the execution times for sequential version with RTI, parallel
with RTI, and parallel with ATI. We also run Nsight Compute CLI for parallel ver-
sions for the two sets.

We compare RTI with ATI for each selected benchmark by using the Linux com-
mand (diff). ATI is not missing a test input when generated by our algorithm (i.e.,
our algorithm does not delete or add new test inputs to ATI). Both sets have the
same test inputs, while they are different in the order of test inputs.

Table 5   Metrics collected from Nsight compute CLI

Nsight compute CLI Definition

Warp execution efficiency Ratio of the average active threads per warp to the maximum number of
threads per warp supported on a multiprocessor

Warp non-predicated execu-
tion efficiency

Ratio of the average active threads per warp executing non-predicated
instructions to the maximum number of threads per warp supported on
a multiprocessor expressed as percentage

Stall memory dependency Percentage of stalls occurring because a memory operation cannot be
performed due to the required resources not being available or fully
utilized, or because too many requests of a given type are outstanding

Table 6   Metrics used for code analysis and statistical data

Category Name Description

Code analysis Number of duplicated code lines
(NDCL)

Number of duplicated lines in duplicated
code blocks. The duplicated lines of
each code block are calculated as the
sum of involved occurrences excluding
the largest, which is treated as the
reference

Average block nesting depth (ABND) Weighted average of nesting depth
Size Lines of code (LOC) Lines of code excluding blank and com-

ment lines
Number of statements (NOS) Counts all statements
Source element count (SEC) Number of programming elements (i.e.,

types, fields, methods, functions, etc.)
plus number of statements

Thomas J.McCabe Average Complexity (AC) Weighted average modified cyclomatic
complexity

	 T. Bagies et al.

1 3

We validate the output results from the test driver for the two versions (sequential
and parallel). The output results are the same for the two versions and the two test
inputs sets. However, when a program use floating-point, there are small differences
between GPU results and CPU results. A GPU hardware architecture handles float-
ing-point differently from CPU hardware architecture [71].

The floating-point issue appears only in five programs of Polybench. Although
IMA has floating-point variables, the processed images from the CPU version and
GPU version are identical. Since the other benchmarks deal with integer numbers
and strings, the floating-point issue does not impact their output results.

7.1 � RQ1: validation and correctness

We use Polybench (the first selected benchmark) and its test inputs to build two sets:
(1) best arranged test inputs (BestSet) and (2) badly arranged test inputs (BadSet).
BestSet has the same 32 test inputs per warp, so each thread executes the same state-
ment (no branch divergence per warp). BadSet includes different 32 test inputs per
warp, so there might be a branch divergence. Then, we apply our algorithm to build
ATI from BadSet. After that, we compare ATI with BestSet.

As shown in Table 7, our algorithm generated the expected arranged test set when
we compare the generated ATI with BestSet. The algorithm creates a similar set to
BestSet such that they have the same 32 test inputs in a group, but the order of these
groups is different. If, for example, BestSet has test#1-test#32 in warp#1, our algo-
rithm may put these test inputs in warp#2.

7.2 � RQ2: execution time

Table 8 shows the execution time (including data transferring) in seconds for each
selected benchmark. The first column is the benchmark name. The second column
is the execution time in seconds of a test driver on the CPU version with RTI. The
third column is the execution time in seconds of the test driver on the GPU with

Table 7   Part of BestSet, BadSet,
and ATI of Polybench

Test input# BestSet BadSet Arranged test input
produced by our
algorithm

0 0 434 7 0 434 7 2 151 151
15 0 434 7 9 422 153 2 151 151
31 0 434 7 2 151 151 2 151 151
32 9 422 153 0 434 7 0 434 7
47 9 422 153 9 422 153 0 434 7
63 9 422 153 2 151 151 0 434 7
64 2 151 151 0 434 7 9 422 153
79 2 151 151 9 422 153 9 422 153
95 2 151 151 2 151 151 9 422 153

1 3

Reducing branch divergence to speed up parallel execution…

RTI. The last column is the execution time in seconds of a test driver on the GPU
version with ATI (generated by our approach).

Running test case inputs on the GPU machine is faster than on the CPU machine
for all selected programs with RTI (Table 8 column#2 and #3). When we apply our
approach to arrange RTI, the execution time of a test driver for four selected bench-
marks is faster than RTI on the GPU machine (Table 8 column#3 and #4).

Although our algorithm arranged the test inputs as excepted, the speedup ratio
was affected by a couple of other factors than branch divergence. Table 9 and
Table 10 show four reasons for the various speedup achieved between the selected
benchmarks: (1) The amount of data transferring between host and device, (2) dif-
ferent control flow paths (if statements and loops), (3) warp load imbalance, and (4)
cache locality.

Table 8   Execution time of test
driver for the six benchmarks
in seconds (sec) by using RTI
and ATI

Benchmark CPU time (sec) GPU time (sec) GPU time (sec)
RTI RTI ATI

IMA 24.5 19.8 6.4
SortLib 56.0 26.5 15.7
Polybench 89.2 55.2 49.1
DynProg 40.3 37.0 49.5
GAlg 195.8 182.3 257.8
EEMBC 0.023 0.007 0.006

Table 9   Data transferring affect the performance of our algorithm

Benchmark Datatype #Arguments #Arrays Arrays’ sizes

IMA Float, int 11 3
SortLib Int 3 1 Different
Polybench Float, int 12 6 Sizes
DynProg Int, char 10 6
GAlgo Double, int 10 5
EEMBC Short, char, int 35 2 Fixed sizes (215)

Table 10   Reasons affect the
performance of our algorithm

Benchmark Warp load imbalance Cache locality Control flow

IMA No No If and
SortLib No Yes Switch
EEMBC No Yes Statements
Polybench No Yes
DynProg Different complexity Yes Loops
GAlgo Different complexity Yes

	 T. Bagies et al.

1 3

The first factor is data transfer. As shown in Table 9, the datatype, number of
arguments, number of arrays, and sizes of arrays are different from one benchmark
to another. This provides one explanation of why one benchmark gains a higher
speedup ratio than another benchmark. As shown in Fig. 4a, the speedup ratio of
the ATI of IMA, SortLib, and EEMBC are 3.8, 3.6, and 3.8, respectively. On the
contrary, the speedup ratio of Polybench, DynProg, and GAlgo are 1.8, 0.8, 0.4,
respectively. Polybench, DynProg, and GAlgo have at least five arrays transferred
from host to device, whereas IMA, SortLib, and EEMBC have at most three arrays
transferred from host to device. Therefore, data transfer is one reason that affects the
execution time when testing on GPUs.

The second factor is a control flow path of a source code. For example, most of
the branches of IMA and SortLib are produced by if statements and switch state-
ments rather than loops (Table 10). Thus, They achieve a better speedup ratio by our
algorithm than other benchmarks (Fig. 4a). Although EEMBC has a bigger number
of if statements than loops, the difference in the speedup ratio between ATI and RTI
is not significant because most of the if statements have one line of code.

The third factor is warp load imbalance, which occurs when one warp needs time
to execute while another warp finishes its execution. Table 8 shows that DynProg
and GAlg are slower with the ATI set than the RTI set because they have differ-
ent functions with different time complexity (Table 10). In DynProg, for exam-
ple, the time complexity of some of these functions is polynomial (e.g., Fibonacci
Numbers). In contrast, the time complexity of some functions is exponential (e.g.,
Edit Distance and Knapsack). In the GAlg benchmark, Dijkstra’s algorithm’s time
complexity is O(E logV) , whereas the time complexity of Floyd Warshall is O(V3) .
This leads to a load imbalance problem. For instance, our algorithm assigns one
warp with 32 test inputs invoking the Edit Distance function, while it assigns 32 test
inputs calling Fibonacci Numbers function to another warp. With RTI, one warp
could have a test input invoking Edit Distance and another test input calling Fibo-
nacci Numbers. Different warps may execute different functions with different exe-
cution times (polynomial and exponential). As a result, there is no overhead on one
warp performing a function with exponential time in RTI.

With regard to static code analysis, Table 11 shows statistical data results for each
benchmark. Our algorithm performs well on the IMA benchmark with the highest
LOC, NOS, SEC, and AC, among other benchmarks. Therefore, our algorithm will
help speed up the testing execution when a program under test has many LOC, NOS,
SEC, and AC.

7.3 � RQ3: effectiveness

The achieved occupancy of all used benchmarks is 100% for both ATI and RTI. We
have 1024 test inputs for a block. A block has up to 32 warps. These 32 warps exe-
cute in parallel.

Using ATI generated by our algorithm significantly improves the warp execution
efficiency and warp non-predicated execution efficiency for all selected benchmarks
(Fig. 4b, c). On the other hand, ATI increases the percentage of the stall memory

1 3

Reducing branch divergence to speed up parallel execution…

Fig. 4   Speedup ratio and the three Nsight Compute CLI metrics

	 T. Bagies et al.

1 3

dependency (Fig. 4d) for all benchmarks, which negatively impacts the performance
of some benchmarks.

7.3.1 � Warp execution efficiency

With ATI, there is a significant improvement with respect to the ratio of the number
of active threads per warp to the total number of threads per warp in all benchmarks,
which ranges between 6.13 and 31.98 threads/warp. RTI has poor warp execution
efficiency which ranges between 1.4 and 4.81 threads/warp. As a result, our algo-
rithm reduces the number of inactive threads per warp, which is the main goal of
this paper.

The ratio of the active threads per warp is different from one benchmark to
another because of two factors. The first factor is the branches produced by loops.
Even though our algorithm tries to find similar control flow paths between different
test inputs, there might be loops that iterate based on array size. For example, if a
test inputs set has 32 test inputs with array size ranges between 2 and 99 and another
test inputs with array size ranges between 100 and 500, our algorithm will put the
first 32 test inputs in a warp, and the second one in a different warp. The difference
in the number of iterations (branches) between threads in the first warp does not
exceed 97 iterations. For the second warp, the difference in the number of iterations
between threads does not go beyond 400 iterations. This increases the number of
branches in one warp versus another warp. Consequently, it reduces the number of
active threads per warp. This case appears in all benchmarks except EEMBC. As
shown in Table 9, EEMBC has one array with a fixed length (215). This gives a rea-
son why EEMBC achieves the highest ratio of almost 32 threads/warp.

The second factor affecting the warp execution efficiency negatively is branches
produced by if statements. If a program under test has a lot of if statements, the warp
execution efficiency will decrease. Thus, our algorithm will improve the execution
time of this program and the warp execution efficiency. For example, IMA has many
if statements in which our algorithm improves its execution time. On the other hand,
GAlg benchmark has the fewest number of if statements than the other benchmarks.

Table 11   Statistical data of the
selected benchmarks gathered
by using the metrics described
in Table 6

NDCL Number of duplicated code lines, ABND average block nest-
ing depth, LOC :lines of code, NOS Number of statements, SEC
Source element coun, AC Average complexity

Benchmark NDCL ABND LOC NOS SEC AC

IMA 91 2.91 6,180 4,750 5217 14.86
SortLib 0 2.23 453 375 408 4.58
Polybench 0 2.41 706 530 590 5.14
DynProg 0 2.76 450 358 393 7.51
GAlgo 0 3.3 266 213 243 5.44
EEMBC 119 2.75 938 561 665 12.18

1 3

Reducing branch divergence to speed up parallel execution…

Most of its branches are produced by loops. Thus, the execution time of ATI of
GAlg is not improved. As a result, our algorithm will be beneficial when a program
under test has many if statements.

7.3.2 � Warp execution non‑predicated efficiency

With ATI, Fig. 4c shows a significant improvement in warp execution non-predi-
cated efficiency which is the percentage of the ratio of active threads executed non-
predicated instructions to the total number of executed instructions per warp. Hav-
ing similar control flow paths of different test inputs increase the number of active
threads executing the same instructions at the same time in a warp. For example,
if there are 64 test inputs half of them execute branch A and half of them execute
branch B, our algorithm will put the 32 test inputs executing branch A in a warp
whereas the second 32 test inputs executing branch B will be in another warp. As a
result, the number of inactive threads is reduced for non-predicated instructions.

EEMBC has the highest percentage of warp non-predicated execution efficiency.
Although it has many if statements, most of them have only one expression and
there is no nested if statement. In addition, most of the test inputs provided by the
developer for each function under test execute the same if parts. From the generated
branch traces (the first step of our algorithm), the distance between one test input to
another is zero for 85% of the branches in average. Additionally, EEMBC has loops
with the same number of iterations for every test input as the developer specifies the
maximum size of the array as a constant. As a result, there is not a huge difference
between RTI and ATI for EEMBC in terms of their execution times.

For the other benchmarks, the presence of loops that produce branches affects the
warp non-predicated efficiency as each test input iterates with a different number of
iterations as we discussed previously.

7.3.3 � Stall memory dependency

Since all benchmarks have arrays, the most stall reasons could be related to memory
dependency. Array size affects the memory access pattern (cache locality) in a GPU
machine because the amount of cache is smaller than in regular CPUs. Figure 4d
shows that five benchmarks have more than 50% stall memory dependency. The per-
centage increases with a generated arranged set because the algorithm will put test
inputs with a large array size (e.g., 500–550) in one warp whereas it will put test
inputs with small array size (e.g., 10–50) in another warp. Thus, the memory access
pattern and memory coalescing will affect the first warp since all test inputs in this
warp have a bigger array size than the second set of test inputs.

The lowest stall memory dependency is for IMA. Compared with the other bench-
marks, IMA has the most number of LOC (Table 11) making stall instruction fetch
to be 10%. Other benchmarks have less than 1% stall instruction fetch. Also, the
array size of the majority of IMA is less than the array size in the other benchmarks.

	 T. Bagies et al.

1 3

8 � Discussions

To make an adequate unit test to catch bugs, we may invoke a function thousands
of times with different inputs. The different test inputs are considered representative
tests and relevant to a program under test. The restriction of 32 threads/warp in a
GPU machine provides an opportunity to give each function under test batches of 32
test inputs.

The time complexity of our algorithm is a polynomial time in terms of number
of test inputs (n) and number of branches (b). For the traces generator step, the time
complexity is O(nb). The time complexity of the similarity matrix step is O(n2) . In a
complete graph, the number of edges (e) is as following: e = n(n−1)

2
 . The time com-

plexity of buckets constructor step has the following: 1) for MST O(e log n) , 2) for
connected components O(n + e) , and 3) for reading data from buckets and storing in
ATI O(n). As a result, the overall time complexity of our algorithm is dominated by
O(n2 log n) , which is scalable.

One may argue that our parallelization may introduce "test-order dependencies"
in which one iteration may impact values used by other iterations. We parallelize
the test execution in an isolation manner such that each thread has its input data (no
shared data). If a function needs to be executed after another function, we test them
in the same order.

The limitations of CUDA (e.g., not supporting String and read file) did not
allow us to run our experiment on real large-scale applications. We believe these
limitations could be resolved in the future by adding the C libraries for CUDA
applications.

Our proposed approach could be applied to multiple program languages. For
example, a test suite could be implemented by using CUDA Python to test Python
code and CUDA Jave to test Java code.

The proposed algorithm could be improved to consider the warp imbalance prob-
lem (e.g., heavy tasks will be distributed to different warps instead of one warp).
The algorithm could be further improved to determine whether it should distribute
test inputs with branch divergence or warp load imbalance depending on the control
flow path under test. Since our algorithm is related to the clustering problem, the
algorithm might be further improved for the clone detection problem.

In our experiment, we use NVIDIA Volta architecture Tesla V100 that supports
the independent thread scheduling feature. This feature determines how to group
active threads from the same warp together. Threads can diverge and reconverge
at sub-warp granularity, while the convergence optimizer in Volta will still group
together threads which are executing the same code and run them in parallel for
maximum efficiency. Note that execution is still SIMT, retaining the execution effi-
ciency of previous architectures [72]. As a result, the speedup ratios (Fig. 4a) are not
significant although our algorithm reduces the number of inactive threads per warp
(Fig. 4b, c).

1 3

Reducing branch divergence to speed up parallel execution…

All the implementations and instructions of how to apply our algorithm for prac-
titioners are available on our GitHub repository text.2

9 � Threats to validity

9.1 � Conclusion validity

Our experiment has a small number of benchmarks, which leads to low statistical
power and tests. Due to the limitation of CUDA, which does not support some of C
standard libraries such as String, we were not able to use any arbitrary benchmarks.
For example, we could not test programs in the SIR-C [73] benchmark since all of
these programs use a C standard library and read and write to a file. We believe this
limitation can be resolved in the future by implementing these C standard libraries
for CUDA programs.

9.2 � Internal validity

Although we use only six benchmarks, they vary in different ways. We use EEMBC
benchmark used by [1, 15]. We use Polybench, which is widely used in high-perfor-
mance computing communities. We include four benchmarks from GitHub to add
other types of program structure different from EEMBC and Polybench. We search
for source code that is well commented and easy to understand.

9.3 � Construct validity

In our experiments, we use AoS and CUDA similar to [15]. In [74], they designed
the input and output data as AoS and showed this design was better than Struct of
Arrays and parallel arrays of inputs and outputs. Also, they showed that CUDA is
better than Open-MP Offloading.

9.4 � External validity

We could not study our algorithm with C real large-scale applications since all C
real-world applications use C standard libraries. This limits the ability to generalize
the results beyond the experiment setting. For example, in IMA (a real small-scale
application in C), we only test functions that do not use unsupported C standard
libraries by CUDA.

2  https://​github.​com/​tbagi​es/​GPU-​Branc​hDive​rgence.

https://github.com/tbagies/GPU-BranchDivergence

	 T. Bagies et al.

1 3

Some selected benchmarks do not have test inputs provided by developers (e.g.,
GAlg [65]). We generate their test inputs automatically such that test inputs cover all
functions as well as different cases. For example, we generate different graphs such
as an undirected graph, directed graph, dense graph and complete graph for GAlg.

9.5 � Portability validity

We did our algorithm on a specific platform (NVIDIA). We specified the warp
size and number of threads per warp with respect to NVIDIA specification. If you
move to different architecture, you may need some fine-tuning based on the cho-
sen architecture specifications, such as changing the warp size.

9.6 � Reproducibility validity

Our algorithm should not be repeated and reproduce new traces or a similarity
matrix whenever a program under test changes. If, for example, we have already
run the testing with an ATI set generated from our algorithm based on traces and
similarity matrix of an old version of the program under test. Then, the program
changes and has a new version. The old ATI set may not work well as it is built
based on the old version. In other words, the generated ATI set might need to
be rearranged. However, we do not want to repeat the whole execution of our
algorithm (e.g., collecting branch traces and producing a new similarity matrix).
Instead, we could use some regression testing techniques [75, 76] in which we
eliminate the test inputs that were not affected by the change. The remaining test
inputs that were affected by the change could be rearranged based on a new step
that should be added to our algorithm (we consider this as future work).

10 � Conclusion and future work

When parallelizing test execution on a GPU, each test input is executed by a
thread and may have a different control flow path, which leads to divergent
instructions between threads. Some threads are inactive, waiting for other threads
to finish their execution. Therefore, the branch divergence among threads in a
warp increases the overall test execution time. We propose an algorithm that
arranges the test inputs concerning their control flow path to reduce the branch
divergence when executing tests on GPUs.

Our approach helps in grouping similar control flow paths of test case inputs
to be executed in 32 threads per warp. It shows that arranging the test case inputs
yields faster execution time of four of six selected benchmarks. Also, it improves
the warp execution efficiency on the GPU machine for all tested benchmarks.

Our approach is the first step to build a set of ATI. A direction for future work
would be utilizing some regression testing techniques to re-arrange test inputs

1 3

Reducing branch divergence to speed up parallel execution…

that are affected by adding a new function or deleting an existing function. In
addition, we would address the load imbalance problem when a program under
test has different functions with different time complexities (exponential, polyno-
mial), or has test inputs with small and large array sizes.

Acknowledgements  We would like to thank King Abdulaziz University, Jeddah, Saudi Arabia for sup-
porting the Ph.D. scholarship to work on research.

Author contributions  TB wrote the main manuscript text and prepared all figures and tables. AJ reviewed
the manuscript

Funding  The authors declare no funding.

Declarations 

Conflict of interest  The authors declare that there is no conflict of interest.

References

	 1.	 Yaneva V, Rajan A, Dubach C (2017) Compiler-assisted test acceleration on gpus for embedded
software. In: Proceedings of the 26th ACM SIGSOFT International Symposium on Software Test-
ing and Analysis. ISSTA 2017, pp. 35–45. ACM, New York, NY, USA. https://​doi.​org/​10.​1145/​
30927​03.​30927​20

	 2.	 Harrold MJ (2000) Testing: A roadmap. In: Proceedings of the Conference on The Future of Soft-
ware Engineering. ICSE ’00, pp. 61–72. ACM, New York, NY, USA. https://​doi.​org/​10.​1145/​
336512.​336532

	 3.	 Shete N, Jadhav A (2014) An empirical study of test cases in software testing. In: International Con-
ference on Information Communication and Embedded Systems (ICICES2014), pp. 1–5. https://​doi.​
org/​10.​1109/​ICICES.​2014.​70338​83

	 4.	 Sommerville I (2015) Software Engineering, 10th edn. Pearson, ???
	 5.	 Rothermel G, Untch RH, Chu C, Harrold MJ (2001) Prioritizing test cases for regression testing.

IEEE Trans Software Eng 27(10):929–948. https://​doi.​org/​10.​1109/​32.​962562
	 6.	 Gambi A, Kappler S, Lampel J, Zeller A (2017) Cut: Automatic unit testing in the cloud. In: Pro-

ceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis.
ISSTA 2017, pp. 364–367. ACM, New York, NY, USA

	 7.	 Kappler S (2016) Finding and breaking test dependencies to speed up test execution. In: Proceed-
ings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering. FSE 2016, pp. 1136–1138. ACM, New York, NY, USA. https://​doi.​org/​10.​1145/​29502​90.​
29839​74

	 8.	 Liu C-H, Chen S-L, Chen W-K (2017) Cost-benefit evaluation on parallel execution for improv-
ing test efficiency over cloud. In: 2017 International Conference on Applied System Innovation
(ICASI), pp. 199–202. https://​doi.​org/​10.​1109/​ICASI.​2017.​79883​84

	 9.	 Oriol M, Ullah F (2010) Yeti on the cloud. In: 2010 Third International Conference on Software
Testing, Verification, and Validation Workshops, pp. 434–437. https://​doi.​org/​10.​1109/​ICSTW.​
2010.​68

	10.	 Parveen T, Tilley S, Daley N, Morales P (2009) Towards a distributed execution framework for junit
test cases. In: 2009 IEEE International Conference on Software Maintenance, pp. 425–428. https://​
doi.​org/​10.​1109/​ICSM.​2009.​53062​92

	11.	 Gambi A, Gorla A, Zeller A (2017) O!snap: Cost-efficient testing in the cloud. In: 2017 IEEE Inter-
national Conference on Software Testing, Verification and Validation (ICST), pp. 454–459. https://​
doi.​org/​10.​1109/​ICST.​2017.​51

https://doi.org/10.1145/3092703.3092720
https://doi.org/10.1145/3092703.3092720
https://doi.org/10.1145/336512.336532
https://doi.org/10.1145/336512.336532
https://doi.org/10.1109/ICICES.2014.7033883
https://doi.org/10.1109/ICICES.2014.7033883
https://doi.org/10.1109/32.962562
https://doi.org/10.1145/2950290.2983974
https://doi.org/10.1145/2950290.2983974
https://doi.org/10.1109/ICASI.2017.7988384
https://doi.org/10.1109/ICSTW.2010.68
https://doi.org/10.1109/ICSTW.2010.68
https://doi.org/10.1109/ICSM.2009.5306292
https://doi.org/10.1109/ICSM.2009.5306292
https://doi.org/10.1109/ICST.2017.51
https://doi.org/10.1109/ICST.2017.51

	 T. Bagies et al.

1 3

	12.	 von Hof V, Fuchs A (2018) Automatic scalable parallel test case execution. introducing the münster
distributed test case runner for java (midstr). In: Proceedings of the 33rd Annual ACM Symposium
on Applied Computing, pp. 1062–1064

	13.	 Koong C-S, Shih C-H, Wu C-C, Hsiung P-A (2013) The architecture of parallelized cloud-based
automatic testing system. In: 2013 Seventh International Conference on Complex, Intelligent, and
Software Intensive Systems, pp. 467–470. https://​doi.​org/​10.​1109/​CISIS.​2013.​85

	14.	 Duarte A, Cirne W, Brasileiro F, Machado P (2006) Gridunit: software testing on the grid. In: Pro-
ceedings of the 28th International Conference on Software Engineering, pp. 779–782

	15.	 Rajan A, Sharma S, Schrammel P, Kroening D (2014) Accelerated test execution using gpus. In:
Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering.
ASE ’14, pp. 97–102. ACM, New York, NY, USA. https://​doi.​org/​10.​1145/​26429​37.​26429​57

	16.	 Han TD, Abdelrahman TS (2011) Reducing branch divergence in gpu programs. In: Proceedings of
the Fourth Workshop on General Purpose Processing on Graphics Processing Units. GPGPU-4, pp.
3–138. ACM, New York, NY, USA. https://​doi.​org/​10.​1145/​19641​79.​19641​84

	17.	 Zhang EZ, Jiang Y, Guo Z, Shen X (2010) Streamlining gpu applications on the fly: Thread diver-
gence elimination through runtime thread-data remapping. In: Proceedings of the 24th ACM
International Conference on Supercomputing. ICS ’10, pp. 115–126. Association for Computing
Machinery, New York, NY, USA. https://​doi.​org/​10.​1145/​18100​85.​18101​04

	18.	 Yu Z, Eeckhout L, Xu C (2016) Thread similarity matrix: Visualizing branch divergence in gpgpu
programs. In: 2016 45th International Conference on Parallel Processing (ICPP), pp. 179–184

	19.	 Coutinho B, Sampaio D, Pereira FMQ, Meira Jr W (2011) Divergence analysis and optimizations.
In: 2011 International Conference on Parallel Architectures and Compilation Techniques, pp. 320–
329. IEEE

	20.	 Sampaio D, Martins R, Collange S, Pereira FMQ (2012) Divergence analysis with affine constraints.
In: 2012 IEEE 24th International Symposium on Computer Architecture and High Performance
Computing, pp. 67–74

	21.	 Kerr A, Diamos G, Yalamanchili S (2009) A characterization and analysis of ptx kernels, pp. 3–12.
https://​doi.​org/​10.​1109/​IISWC.​2009.​53068​01

	22.	 Sartori J, Kumar R (2013) Branch and data herding: reducing control and memory divergence for
error-tolerant gpu applications. IEEE Trans Multimedia 15(2):279–290

	23.	 Vespa LVL (2018) Unraveling the divergence of gpu threads. In: 2018 International Conference on
Computational Science and Computational Intelligence (CSCI), pp. 1398–1403

	24.	 Chakroun I, Mezmaz M, Melab N, Bendjoudi A (2013) Reducing thread divergence in a gpu-accel-
erated branch-and-bound algorithm. Concurr Comput Pract Exp 25(8):1121–1136

	25.	 Li Y, Liu R (2016) High throughput gpu polar decoder. In: 2016 2nd IEEE International Conference
on Computer and Communications (ICCC), pp. 1123–1127

	26.	 Carrillo S, Siegel J, Li X (2009) A control-structure splitting optimization for gpgpu. In: Proceed-
ings of the 6th ACM Conference on Computing Frontiers, pp. 147–150

	27.	 Reissmann N, Falch TL, Bjørnseth BA, Bahmann H, Meyer JC, Jahre M (2016) Efficient control
flow restructuring for gpus. In: 2016 International Conference on High Performance Computing
Simulation (HPCS), pp. 48–57

	28.	 Anantpur J, Govindarajan R (2014) Taming control divergence in gpus through control flow lineari-
zation. In: International Conference on Compiler Construction, pp. 133–153. Springer

	29.	 Zone ND (2021) CUDA Toolkit Documentation. https://​docs.​nvidia.​com/​cuda/​cuda-c-​progr​
amming-​guide/​index.​html#​simt-​archi​tectu​re. Accessed on 23 June 2021

	30.	 Gupta P (2020) CUDA Refresher: The CUDA Programming Model. https://​devel​oper.​nvidia.​com/​
blog/​cuda-​refre​sher-​cuda-​progr​amming-​model/. Accessed on 27 June 2021

	31.	 Han TD, Abdelrahman TS (2011) hicuda: High-level gpgpu programming. IEEE Trans Parallel Dis-
trib Syst 22(1):78–90. https://​doi.​org/​10.​1109/​TPDS.​2010.​62

	32.	 Lin Y, Grover V (2012) Using CUDA warp-level primitives. https://​devbl​ogs.​nvidia.​com/​using-​
cuda-​warp-​level-​primi​tives/. Accessed on 14 Oct 2018

	33.	 Workshop V (2019) Introduction to GPGPU and CUDA programming: thread divergence. https://​
cvw.​cac.​corne​ll.​edu/​gpu/​thread_​div. Accessed on 20 Aug 2019

	34.	 Srivastava A, Thiagarajan J (2002) Effectively prioritizing tests in development environment. In:
Proceedings of the 2002 ACM SIGSOFT International Symposium on Software Testing and Analy-
sis, pp. 97–106

https://doi.org/10.1109/CISIS.2013.85
https://doi.org/10.1145/2642937.2642957
https://doi.org/10.1145/1964179.1964184
https://doi.org/10.1145/1810085.1810104
https://doi.org/10.1109/IISWC.2009.5306801
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#simt-architecture
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#simt-architecture
https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/
https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/
https://doi.org/10.1109/TPDS.2010.62
https://devblogs.nvidia.com/using-cuda-warp-level-primitives/
https://devblogs.nvidia.com/using-cuda-warp-level-primitives/
https://cvw.cac.cornell.edu/gpu/thread_div
https://cvw.cac.cornell.edu/gpu/thread_div

1 3

Reducing branch divergence to speed up parallel execution…

	35.	 Wong WE, Horgan JR, London S, Agrawal H (1997) A study of effective regression testing in prac-
tice. In: Proceedings The Eighth International Symposium on Software Reliability Engineering. pp
264–274

	36.	 Beller M, Gousios G, Panichella A, Zaidman A (2015) When, how, and why developers (do not) test
in their ides. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineer-
ing. ESEC/FSE 2015, pp. 179–190. Association for Computing Machinery, New York, NY, USA.
https://​doi.​org/​10.​1145/​27868​05.​27868​43

	37.	 Rothermel G, Untch RH, Chu C, Harrold MJ (1999) Test case prioritization: An empirical study. In:
Proceedings IEEE International Conference on Software Maintenance-1999 (ICSM’99).’Software
Maintenance for Business Change’(Cat. No. 99CB36360), pp. 179–188. IEEE

	38.	 Zhang S, Jalali D, Wuttke J, Muşlu K, Lam W, Ernst MD, Notkin D (2014) Empirically revisiting
the test independence assumption. In: Proceedings of the 2014 International Symposium on Soft-
ware Testing and Analysis, pp. 385–396

	39.	 Lam W, Zhang S, Ernst MD (2015) When tests collide: evaluating and coping with the impact of
test dependence. University of Washington Department of Computer Science and Engineering,
Tech, Rep

	40.	 Schwahn O, Coppik N, Winter S, Suri N (2019) Assessing the state and improving the art of paral-
lel testing for c. In: Proceedings of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis, pp. 123–133

	41.	 Hu H, Jiang C-H, Ye F, Cai K-Y, Huang D, Yau SS (2010) A parallel implementation strategy of
adaptive testing. In: 2010 IEEE 34th Annual Computer Software and Applications Conference
Workshops, pp. 214–219. https://​doi.​org/​10.​1109/​COMPS​ACW.​2010.​44

	42.	 Misailovic S, Milicevic A, Petrovic N, Khurshid S, Marinov D (2007) Parallel test generation and
execution with korat. In: Proceedings of the the 6th Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engi-
neering, pp. 135–144

	43.	 Siddiqui JH, Khurshid S (2009) Pkorat: Parallel generation of structurally complex test inputs.
In: 2009 International Conference on Software Testing Verification and Validation, pp. 250–259.
https://​doi.​org/​10.​1109/​ICST.​2009.​48

	44.	 Fung WWL, Sham I, Yuan G, Aamodt TM (2007) Dynamic warp formation and scheduling for effi-
cient gpu control flow. In: 40th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO 2007), pp. 407–420

	45.	 Brunie N, Collange S, Diamos G (2012) Simultaneous branch and warp interweaving for sus-
tained gpu performance. In: 2012 39th Annual International Symposium on Computer Architecture
(ISCA), pp. 49–60

	46.	 Rhu M, Erez M (2012) Capri: prediction of compaction-adequacy for handling control-divergence
in gpgpu architectures. ACM SIGARCH Comput Arch News 40(3):61–71

	47.	 Rhu M, Erez M (2013) Maximizing simd resource utilization in gpgpus with simd lane permuta-
tion. In: Proceedings of the 40th Annual International Symposium on Computer Architecture. pp.
356–367

	48.	 Fung WWL, Aamodt TM (2011) Thread block compaction for efficient simt control flow. In: Pro-
ceedings of the 2011 IEEE 17th International Symposium on High Performance Computer Archi-
tecture. HPCA ’11, pp. 25–36. IEEE Computer Society, USA

	49.	 Li B, Wei J, Guo W, Sun J (2015) Improving simd utilization with thread-lane shuffled compaction
in gpgpu. Chin J Electron 24:684–688. https://​doi.​org/​10.​1049/​cje.​2015.​10.​004

	50.	 Yang H, Chen S, Wan J, Xu X (2015) Divergent branch threads compaction for efficient simd con-
trol flow. Chin J Electron 24(2):288–294

	51.	 Narasiman V, Shebanow M, Lee CJ, Miftakhutdinov R, Mutlu O, Patt YN (2011) Improving gpu
performance via large warps and two-level warp scheduling. In: Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture. MICRO-44, pp. 308–317. Association
for Computing Machinery, New York, NY, USA. https://​doi.​org/​10.​1145/​21556​20.​21556​56

	52.	 Meng J, Tarjan D, Skadron K (2010) Dynamic warp subdivision for integrated branch and memory
divergence tolerance. In: Proceedings of the 37th Annual International Symposium on Computer
Architecture. pp. 235–246

	53.	 Tarjan D, Meng J, Skadron K (2009) Increasing memory miss tolerance for simd cores. In: Proceed-
ings of the Conference on High Performance Computing Networking, Storage and Analysis. pp.
1–11

https://doi.org/10.1145/2786805.2786843
https://doi.org/10.1109/COMPSACW.2010.44
https://doi.org/10.1109/ICST.2009.48
https://doi.org/10.1049/cje.2015.10.004
https://doi.org/10.1145/2155620.2155656

	 T. Bagies et al.

1 3

	54.	 Emmery C (2017) Euclidean vs. cosine distance. https://​cmry.​github.​io/​notes/​eucli​dean-v-​cosine.
Accessed on 27 June 2021

	55.	 Ladd JR (2020) Understanding and using common similarity measures for text analysis. https://​
progr​ammin​ghist​orian.​org/​en/​lesso​ns/​common-​simil​arity-​measu​res. Accessed on 11 Jul 2021

	56.	 Nvidia (2018) cuda-c-programming-guide. https://​docs.​nvidia.​com/​cuda/​cuda-c-​progr​amming-​
guide/​index.​html#​featu​res-​and-​techn​ical-​speci​ficat​ions__​techn​ical-​speci​ficat​ions-​per-​compu​te-​
capab​ility. Accessed on 28 Jul 2018

	57.	 die.net (2011) clock_gettime(3); Linux man page. https://​linux.​die.​net/​man/3/​clock_​getti​me.
Accessed on 16 Oct 2018

	58.	 Yang C-T, Huang C-L, Lin C-F (2011) Hybrid cuda, openmp and mpi parallel programming on
multicore gpu clusters. Comput Phys Commun. 182(1):266–269. https://​doi.​org/​10.​1016/j.​cpc.​2010.​
06.​035. Computer Physics Communications Special Edition for Conference on Computational Phys-
ics Kaohsiung, Taiwan, Dec 15–19, 2009

	59.	 Harris M (2011) How to Implement Performance Metrics in CUDA C/C++. https://​devbl​ogs.​nvidia.​
com/​how-​imple​ment-​perfo​rmance-​metri​cs-​cuda-​cc/. Accessed on 16 Oct 2018

	60.	 NVIDIA (2012) NVIDIA CUDA C Programming Guide. https://​devel​oper.​downl​oad.​nvidia.​com/​
compu​te/​DevZo​ne/​docs/​html/C/​doc/​CUDA_C_​Progr​amming_​Guide.​pdf. Accessed on 26 Jan 2019

	61.	 Pouchet LN (2016) PolyBench/C 3.2. http://​polyb​ench.​sourc​eforge.​net. Accessed on 14 Oct 2018
	62.	 Kalliamvakou E, Damian D, Blincoe K, Singer L, German DM (2015) Open source-style collabora-

tive development practices in commercial projects using github. In: Proceedings of the 37th Interna-
tional Conference on Software Engineering: Volume 1. ICSE ’15, pp. 574–585. IEEE Press, Piscata-
way, NJ, USA. http://​dl.​acm.​org/​citat​ion.​cfm?​id=​28187​54.​28188​25

	63.	 Quijada M (2014) image-manipulation-in-c. https://​github.​com/​maury​quija​da/​image-​manip​ulati​on-​
in-c.​git. Accessed on 29 Jul 2018

	64.	 Yerburgh E (2017) c-sorting-algorithms. https://​github.​com/​eddye​rburgh/​c-​sorti​ng-​algor​ithms/​tree/​
master/​algor​ithms. Accessed on 17 Aug 2019

	65.	 Felipe L (2018) VAR-solutions. https://​github.​com/​luizok/​Graph​Algor​ithms/​blob/​master/​graph​
algs.c. Accessed on 14 Jan 2020

	66.	 Varshney R (2018) VAR-solutions. https://​github.​com/​VAR-​solut​ions/​Algor​ithms/​tree/​dev/​Dynam​
ic%​20Pro​gramm​ing. Accessed on 14 Jan 2020

	67.	 Corporation N (2019) Nsight Compute CLI. https://​docs.​nvidia.​com/​nsight-​compu​te/​Nsigh​tComp​
uteCli/​index.​html. Accessed on 4 Sep 2019

	68.	 NVIDIA (2018) NVIDIACUDA Toolkit Documentation. https://​docs.​nvidia.​com/​cuda/​profi​ler-​
users-​guide/​index.​html#​metri​cs-​refer​ence. Accessed on 14 Oct 2018

	69.	 Corporation N (2019) Nsight Compute CLI-5.3. Metric Comparison. https://​docs.​nvidia.​com/​
nsight-​compu​te/​Nsigh​tComp​uteCli/​index.​html#​nvprof-​metric-​compa​rison. Accessed on 4 Sept
2019

	70.	 Family SP (2021) Sonargraph-Architect. https://​www.​hello​2morr​ow.​com/​produ​cts/​sonar​graph/​archi​
tect9. Accessed on 16 Nov 2021

	71.	 Whitehead N, Fit-Florea A (2011) Precision & performance: floating point and ieee 754 compliance
for nvidia gpus. rn (A+ B) 21(1):18749–19424

	72.	 NVIDIA (2017) NVIDIA TESLA V100 GPU ARCHITECTURE. https://​images.​nvidia.​com/​conte​
nt/​volta-​archi​tectu​re/​pdf/​volta-​archi​tectu​re-​white​paper.​pdf. Accessed on 28 Apr 2023

	73.	 Repository S-aI: SIR Usage Information. https://​sir.​csc.​ncsu.​edu/​portal/​usage.​php. Accessed on 3
Apr 2019

	74.	 Bagies T, Jannesari A (2021) An empirical study of parallelizing test execution using cuda unified
memory and openmp gpu offloading. In: 2021 IEEE International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW), pp. 271–278. https://​doi.​org/​10.​1109/​ICSTW​
52544.​2021.​00052

	75.	 Zhang L (2018) Hybrid regression test selection. In: 2018 IEEE/ACM 40th International Confer-
ence on Software Engineering (ICSE), pp. 199–209

	76.	 Marijan D, Liaaen M (2018) Practical selective regression testing with effective redundancy in inter-
leaved tests. In: 2018 IEEE/ACM 40th International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP), pp. 153–162

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://cmry.github.io/notes/euclidean-v-cosine
https://programminghistorian.org/en/lessons/common-similarity-measures
https://programminghistorian.org/en/lessons/common-similarity-measures
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications__technical-specifications-per-compute-capability
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications__technical-specifications-per-compute-capability
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications__technical-specifications-per-compute-capability
https://linux.die.net/man/3/clock_gettime
https://doi.org/10.1016/j.cpc.2010.06.035
https://doi.org/10.1016/j.cpc.2010.06.035
https://devblogs.nvidia.com/how-implement-performance-metrics-cuda-cc/
https://devblogs.nvidia.com/how-implement-performance-metrics-cuda-cc/
https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://polybench.sourceforge.net
http://dl.acm.org/citation.cfm?id=2818754.2818825
https://github.com/mauryquijada/image-manipulation-in-c.git
https://github.com/mauryquijada/image-manipulation-in-c.git
https://github.com/eddyerburgh/c-sorting-algorithms/tree/master/algorithms
https://github.com/eddyerburgh/c-sorting-algorithms/tree/master/algorithms
https://github.com/luizok/GraphAlgorithms/blob/master/graphalgs.c
https://github.com/luizok/GraphAlgorithms/blob/master/graphalgs.c
https://github.com/VAR-solutions/Algorithms/tree/dev/Dynamic%20Programming
https://github.com/VAR-solutions/Algorithms/tree/dev/Dynamic%20Programming
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#metrics-reference
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#metrics-reference
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-metric-comparison
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-metric-comparison
https://www.hello2morrow.com/products/sonargraph/architect9
https://www.hello2morrow.com/products/sonargraph/architect9
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://sir.csc.ncsu.edu/portal/usage.php
https://doi.org/10.1109/ICSTW52544.2021.00052
https://doi.org/10.1109/ICSTW52544.2021.00052

1 3

Reducing branch divergence to speed up parallel execution…

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

	Reducing branch divergence to speed up parallel execution of unit testing on GPUs
	Abstract
	1 Introduction
	2 Background information
	2.1 GPU: programming models
	2.2 GPU: threads and blocks
	2.3 GPU warp

	3 Motivation example
	4 Related work
	5 Approach
	5.1 Branch traces generator
	5.2 Similarity matrix producer
	5.3 Buckets constructor
	5.3.1 Minimum spanning tree (MST)
	5.3.2 Connected components
	5.3.3 Buckets

	6 Evaluation
	6.1 Experimental design
	6.2 Benchmark
	6.3 Test inputs
	6.4 Test driver
	6.4.1 Data structure
	6.4.2 Test inputs reader
	6.4.3 Launch test inputs

	6.5 Profiling
	6.6 Static code analysis

	7 Results
	7.1 RQ1: validation and correctness
	7.2 RQ2: execution time
	7.3 RQ3: effectiveness
	7.3.1 Warp execution efficiency
	7.3.2 Warp execution non-predicated efficiency
	7.3.3 Stall memory dependency

	8 Discussions
	9 Threats to validity
	9.1 Conclusion validity
	9.2 Internal validity
	9.3 Construct validity
	9.4 External validity
	9.5 Portability validity
	9.6 Reproducibility validity

	10 Conclusion and future work
	Acknowledgements
	References

