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Abstract
Software testing is an essential phase in the software development life cycle. One of 
the important types of software testing is unit testing and its execution is time-con-
suming and costly. Using parallelization to speed up the testing execution is benefi-
cial and productive for programmers. To parallelize test execution, researchers can 
use GPU machines. In GPU applications, multiple threads execute in parallel within 
a group known as a warp. Branch divergence affects the performance of a warp neg-
atively when some threads run a branch, and the other threads are idle waiting for 
the first set of threads to finish their execution. In this paper, we propose a novel 
algorithm to minimize branch divergence when testing an application on a GPU. We 
arrange test inputs based on the warp size of a GPU machine. Test inputs that have 
similar control flow paths are grouped within the same warp executing in parallel. 
Thus, the branch divergence is minimized per warp. We validate and evaluate our 
algorithm on six benchmarks (57 programs in total). Our approach accelerates the 
testing execution by up to 3.8x and improves the warp execution efficiency by up to 
15x.
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1 Introduction

In the software development life cycle (SDLC), software testing is an important 
phase and involves 50% of the SDLC, which is time-consuming [1–3]. According 
to [4], one of the main goals of software testing is to discover program defects 
before it is put into use. One process of defect testing is unit testing which is the 
process of testing individual components in isolation. Units may be individual 
functions. When we apply unit testing, we execute a program using artificial data 
(test inputs) [4]. However, executing software testing on an application could 
require seven weeks [5]. Therefore, running software testing in parallel can sig-
nificantly speed up test execution time [6, 7].

To execute software testing in parallel, some studies use distributed execu-
tion environments such as cloud computing or virtual machines (VMs) [6, 8–14]. 
However, distributed environments are costly with respect to maintenance, energy 
consumption, and time scheduling for a shared resource [1]. Therefore, two stud-
ies use GPUs to parallelize test execution.

When parallelizing the test execution on GPU machines, test inputs will be 
distributed on multiple threads [1, 15]. Each test input should follow a control 
flow path of the program under test. Each thread executes a test input, leading to 
the parallel execution of the program test. However, a control flow path may dif-
fer from one test input to another by an instruction in the program under test due 
to a branching instruction. Hint, each thread may execute different instructions 
from other threads.

A phenomenon known as branch divergence occurs when threads in a group 
encounter a branching instruction, not all threads take the same control flow path, 
which negatively affects the parallelization of test execution on GPU machines. 
In a GPU, a number of threads execute in parallel within a group known as warp. 
When parallelizing test execution on a GPU, each test input is executed by a 
thread with a different control flow path leading to divergent instructions between 
threads. The execution of divergent instructions will be serialized [1] such that 
some threads are inactive, waiting for other threads to finish their execution. As 
a result, the branch divergence among threads in a warp increases the overall test 
execution time.

To address branch divergence in GPU general applications, some researchers 
have proposed methods that change the source code of an application [16–28]. 
These proposed methods are not applicable for software testing since we must not 
change the source code for a program under test.

In this paper, we propose a novel algorithm to minimize the branch diver-
gence among threads per warp to test a program in parallel using a GPU machine. 
Essentially, we collect the branch traces of the program from its test inputs. Then, 
we generate a similarity matrix (a complete graph) for each pair of test inputs 
by utilizing Euclidean distance. After that, we build the minimum spanning tree 
(MST) of the complete graph. If the number of connected nodes in the gener-
ated MST is greater than or equal to the size of a warp in a GPU, we sort the 
connected nodes based on the weights of their edges. We use the warp size to 
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determine the number of sorted nodes to store in a bucket and remove from the 
complete graph. We repeat this step until the graph is empty. The result of this 
step is a list of buckets, each with a fixed size (warp size) of test inputs. From 
these buckets, we produce a set called arranged test inputs (ATI) that can be used 
to test a program with minimal branch divergences.

We evaluate the algorithm on six different benchmarks, including 57 programs 
in total. The results show that our algorithm speeds up the testing execution of four 
out of six benchmarks up to 3.8x. It also improves the warp execution efficiency up 
to 31.98 threads/warp and warp non-predicated execution efficiency up to 99.98%.

In summary, this paper makes the following contributions:

• A novel algorithm to arrange the test case inputs reducing the branch divergence 
within a warp on GPUs,

• An algorithm to generate traces from source code that could be used for multiple 
software testing purposes,

• Empirical evaluations on different domains of benchmarks for correctness and 
performance improvement, and their results.

This paper is organized as follows: Sect. 2 provides background information related 
to GPU machines. Section 3 explains a motivation example of how branch diver-
gence emerges in test execution on GPUs. Section 4 presents the literature review. 
Section  5 describes the algorithm of reducing branch divergence. In Sect.  6, we 
describe how we evaluate the algorithm. Section 7 analyzes the results. Section 8 
is the discussion. Section 9 highlights threats to validity. Section 10 concludes and 
highlights future work.

2  Background information

To parallelize the test execution on GPU machines, testers need to write a test driver 
by using a GPU programming model and distribute test inputs on multiple threads 
[1, 15]. These threads will be executed within a warp. To understand the concept of 
threads and blocks on GPUs as well as GPU warp, this section provides essential 
information regarding GPUs and their programming models.

2.1  GPU: programming models

A tester can use CUDA programming models to implement a test suite on GPUs. 
CUDA is a general-purpose parallel computing platform and programming model 
that leverages the parallel computing engine on GPUs to solve many complex com-
putational problems more efficiently than on a CPU. CUDA allows a developer to 
define C++ functions known as kernels. When a kernel is called, it runs N times in 
parallel by N different CUDA threads instead of only once, like regular C++ func-
tions [29].
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2.2  GPU: threads and blocks

According to Gupta [30], CUDA provides an abstraction of GPU architecture acting 
as a bridge between an application and its possible implementation on GPU hard-
ware. In this abstraction, a group of threads is called a CUDA block. CUDA blocks 
are grouped into a grid. A kernel is executed as a grid of blocks of threads.

Since all threads of a block are expected to reside on the same processor core and 
must share the limited memory resources of that core, the number of threads per 
block is limited. On current GPUs, a thread block may contain up to 1024 threads. 
Nonetheless, a kernel can be executed by multiple equally shaped thread blocks. The 
total number of threads is equal to the number of threads per block times the number 
of blocks. Blocks are organized into a one-dimensional, two-dimensional, or three-
dimensional grid of thread blocks. Line#4 specifies the number of threads per block 
and the number of blocks per grid [29].

Listing 1 shows a CUDA sample code that adds two vectors A and B of size N 
and stores the result into vector C. A kernel is defined using the __global__ decla-
ration specifier (line#6). The number of CUDA threads that execute that kernel for 
a given kernel call is specified using <<< ... >>> a new execution configuration 
syntax (line#4). Each thread that executes the kernel is provided by a unique thread 
ID accessible within the kernel through built-in variables (threadIdx in line#7). The 
threadIdx variable is a 3-component vector. Thus, threads can be identified using 
a one-dimensional, two-dimensional, or three-dimensional thread index, forming a 
one-dimensional, two-dimensional, or three-dimensional block of threads, called a 
thread block. This provides a natural way to invoke computation across the elements 
in a domain such as a vector, matrix, or volume [29].

2.3  GPU warp

A GPU architecture is built around a scalable array of multithreaded streaming 
multiprocessors (SMs). A multiprocessor is designed to execute hundreds of 
threads concurrently. GPUs employ a unique architecture called SIMT (single-
instruction, multiple-thread) to manage a large number of threads. In SIMT, a 
multiprocessor creates, manages, schedules, and executes threads in groups of 32 
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parallel threads called warps. Individual threads start together at the same pro-
gram address in a single warp, but they have their instruction address counter 
and register state. Therefore, a group of threads is free to branch and execute 
independently. The term warp originates from weaving, the first parallel thread 
technology [29].

When a multiprocessor is given one or more thread blocks to execute, it partitions 
them into warps. Each warp gets scheduled by a warp scheduler for execution. The 
way a block is partitioned into warps is always the same; each warp contains threads 
of consecutive, increasing thread IDs, with the first warp having thread 0 [29].

As shown in Fig. 1, a programmer specifies 15 blocks and 64 threads per block 
when calling a kernel. A block is divided into warps (groups of 32 threads). A 
warp is the scheduled unit. The threads of the same block are executed in a given 
core warp by warp in a SIMD (single-instruction, multiple-data) fashion.

Fig. 1  An example of GPU blocks,threads, and warps
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A warp executes one instruction at a time. Thus, full efficiency is realized when 
all 32 threads of a warp agree on their execution path. If threads of a warp diverge 
via a data-dependent conditional branch, the warp executes each branch path taken, 
disabling threads that are not on that path. Branch divergence occurs only within a 
warp; different warps execute independently regardless of whether they are execut-
ing common or disjoint code paths [29].

3  Motivation example

A GPU has been used as an accelerator for different applications [31] and applied 
in software testing [1]. It achieves high performance by taking advantage of a warp 
executing a group of threads in single-instruction, multiple-thread fashion [32]. The 
group of threads within a warp must execute the same instruction at the same time. 
In other words, threads cannot diverge within a warp because branch divergence will 
result in serial execution, which can result in a significant performance loss [33].

Figure 2 shows an example to test a program on a GPU machine. There are eight 
test inputs distributed in eight threads within a warp. When executing the if–else 
statement, four threads execute the if part (A and B) whereas the other four threads 
execute the else part (C and D). The warp executes the if part and then proceeds to 
the else part. While executing the if part, all threads (of test#1-test#4) are inacti-
vated. When execution proceeds to the else part, all threads (of test#5-test#8) are 
inactivated. Therefore, the if and else parts are executed sequentially not in parallel.

Our main purpose is to reduce the number of inactive threads per warp by arrang-
ing test inputs such that test inputs that have similar control flow paths should be 
grouped in the same warp. Test inputs that have dissimilar control flow paths should 
be executed in different warps. As a result, the number of inactive threads per warp 
will be reduced and eventually improve the performance of testing.

If we arrange the test inputs to reduce branch divergence, these arranged test 
inputs could be used several times during the SDLC. The test execution is repeated 
several times when a change is made to a program to fix a bug [34, 35]. Chang-
ing source code does not usually require changing its corresponding test because 

Fig. 2  An example of a control flow divergence problem when parallelizing unit testing on a GPU 
machine
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there is a weak correlation between the two [36]. According to Rothermel et al. [37], 
developers often save the tests they develop for their program to reuse later as the 
program evolves.

4  Related work

The previous literature related to parallel software testing falls into four categories: 
(1) parallel test execution on a GPU by implementing a test suite using a GPU pro-
gramming model and reading test case inputs from a file, (2) parallel test suite exe-
cution (e.g., using an existing framework such as JUnit) in cloud computing or VMs, 
(3) parallel test suite execution in a multicore CPU, and (4) parallel test generation. 
For branch divergence in GPU applications, the previous literature falls into two cat-
egories: (1) hardware-based techniques, and (2) software-based techniques.

Our study is related to the first category. The most related work implements a 
test suite that reads test inputs from a file and uses GPU machines to run the testing 
in parallel [1, 15]. In [15], they use CUDA to implement a test driver and run it in 
parallel for embedded software. Yaneva et al. [1] propose a compiler-assisted frame-
work to automatically generate an OpenCL code from a C sequential program and 
execute the tests in parallel on a GPU machine. Both studies use EEMBC (an auto-
motive benchmark) for evaluation and highlight the control flow divergence issue 
as a topic for future work. In this paper, we address this problem and propose an 
algorithm to arrange test inputs reducing the branch divergence per warp such that 
it decreases the number of inactive threads per warp. It improves the warp execution 
efficiency that should speed up the process of unit testing on GPUs. To evaluate our 
algorithm, we use EEMBC benchmark used in [1, 15] in addition to benchmarks 
from other domains.

With regard to the second category, some researchers use cloud computing or 
VMs to execute a test suite in parallel [6, 8–14]. However, a test suite may con-
tain an order-dependent test [38]. This could affect the results when parallelizing the 
execution of a test suite [39]. Therefore, some researchers have proposed algorithms 
and studied the impact of these dependencies when applying parallelization in a test 
suite on cloud or VMs [7, 39, 40]. On the contrary, we use GPU machines and an 
existing test inputs set. Each test input represents a possible value that can be used to 
test a program. Each test input will have a different control flow path coverage from 
the other test inputs. When we parallelize the test execution, we distribute test inputs 
on different threads. There will be no shared data between different threads, so there 
is no dependency between different test inputs.

The third category is parallel test execution on a multicore CPU [41]. They 
presented a parallel implementation of the adaptive testing (AT) technique that 
improves the efficiency of traditional random/partition testing. Unlike their 
approach, our study compares the use of a single computer of multiple threads with 
a GPU for parallel test execution. We focus on addressing the problem of branch 
divergence to decrease test execution time on a GPU.

The last category in parallel software testing is related to parallel test genera-
tion [42, 43]. The studies in this category are different from our work in that they 
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produce algorithms that use Korat (an existing tool for test generator) and run in par-
allel to generate test inputs, whereas we use existing test inputs (generated by devel-
opers/tools) and arrange them to parallelize the test execution in a GPU machine.

With regard to branch divergence in GPUs’ applications, some researchers pro-
pose hardware-based techniques [44–53]. Although these techniques are able to 
minimize the branch divergence for general-purpose GPU applications, they require 
hardware support. However, our study addresses branch divergence for parallel test 
execution without requiring changing GPU hardware configurations.

Other researchers introduce software-based techniques to handle branch diver-
gence in general-purpose GPU applications [16–28]. However, these techniques 
require changing source code to make it run in parallel. In software testing, it is 
required to not change the source code of an application. Therefore, these techniques 
could not be applied to handle branch divergence in parallel test execution on a 
GPU.

To the best of our knowledge, this is the first work on minimizing branch diver-
gence to speed up the execution of testing on GPU machines.

5  Approach

When testing a program on GPUs, a single warp should execute similar control flow 
paths of test inputs to reduce the branch divergence. In other words, a warp should 
run a cluster of test inputs that have similar control flow paths. Each cluster must 
contain 32 test inputs (the warp size). Although we can consider branch divergence 
concerning test execution on GPUs as a clustering problem, most of the clustering 
algorithms do not specify the number of elements in each cluster. Therefore, we pro-
pose a new algorithm that groups different test inputs based on their control flow 
paths into a number of clusters. Each group has 32 test inputs.

Figure 3 shows an overview of our approach. First, we use existing test inputs to 
generate branch traces of a tested program. Since the branch divergence happens at 
the source code level, our clustering algorithm uses the source code to trace the con-
trol flow path of each test input. Branches (if statements and number of loop itera-
tions) are the basic unit that differs a control flow path of a single test input from the 
others. To trace, we use a vector of branches in a source code and count how many a 
branch occurs for each test input.

Fig. 3  Steps of the overview of the approach
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Then, we compute the Euclidean distance of each pair of branch traces, which 
produces the similarity matrix. A clustering algorithm usually uses a matrix to 
find similarities between points, such as cosine similarity and Euclidean distance. 
Euclidean distance accounts for magnitude while cosine distance does not [54, 55]. 
Since the magnitude of the vectors (branches in the source code) is critical, our algo-
rithm uses the Euclidean distance measurement. As a result, the algorithm builds the 
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traces of each test input based on their source code branches and calculates the simi-
larity matrix using the Euclidean distance between each pair of test inputs.

We consider the similarity matrix a complete undirected graph to group the simi-
lar test inputs in a cluster. In the graph, each node represents an ID of a test input. 
Since an MST of an undirected graph is a connected subgraph covering all the graph 
nodes with the minimum possible number of edges (distances), the last step of our 
algorithm is to divide the complete graph into several MSTs.

At each iteration of creating an MST, if the number of connected nodes in the 
MST is equal to or greater than the warp size (32 threads/warp in GPUs [56]), we 
sort these connected nodes. Then, we remove the first 32 connected nodes from the 
graph and store them in a bucket. Each bucket has a fixed number of test inputs 
(32). We repeat generating an MST, finding the 32 connected components, remov-
ing them from the graph, and storing them in a new bucket until the graph is empty. 
Note that the smaller the distance between nodes, the more similar their control flow 
paths are.

As a result, there will be several buckets, each with a fixed number of test inputs. 
The number of buckets equals the number of test inputs divided by the number of 
test inputs in each bucket. A warp will execute each bucket in a GPU machine. In the 
end, a group of 32 test inputs will be executed by a group of 32 threads/warp. We 
summarize our approach in Algorithm 1. We will discuss each step in detail in the 
following sections.

5.1  Branch traces generator

For each test input of a program under test, we collect traces of its control flow path 
with respect to branches. The two important factors to distinguish one test input 
from the others in terms of branches are: (1) which branches are executed by a test 
input, and (2) in which order those branches are executed (e.g., branch#4 executes 
before branch#5 for test#1, branch#3 executes before branch#5 for test#2).

To represent which branches are executed for each test input, we use 2D arrays 
(line#4) such that the row represents the number of test inputs and the column repre-
sents the total number of branches in a program under test. The number of branches 
is collected statically from a program under test, so it is a fixed number for all test 
inputs (line#3).

To keep track of the order of branches, we use a counter variable. For each test 
input, we initialize the counter with zero (line#6). Each time a branch is executed, 
we increment the counter and assign its value to the array’s element of the branch 
(line#16). Note that the counter variable will have different values for different test 
inputs.

In a GPU machine, each warp should execute the same function under test with 
different test case inputs. Since having different tested functions per warp will 
increase its branch divergence, we should add a bigger weight for a branch having 
a function call than other branches. The value of the counter helps to indicate the 
biggest value a branch has. We keep track of the maximum value of a counter from 
different test inputs by using the max variable (line#2,19). Since the value of max 
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is unknown until the last test input executes, we assign a negative one to the visited 
element of a branch having a function call (line#13). After executing all test inputs, 
the value of this branch will be the total number of branches multiplied by the maxi-
mum value of the counter (line#22, 23). As a result, the weight of this branch will be 
the biggest value among other branches.

The input of this step is the source code of a program under test, test inputs, and 
the number of test inputs. The output is the 2D array (traces) of the size number of 
test inputs times the number of branches. Each row contains numbers representing 
how many times a branch has been visited by a test input. Table 1 shows an example 
of the output from this step.

5.2  Similarity matrix producer

From the previous step, we have a 2D array indicating how many times a branch has 
executed for each test input. We use this array to build the similarity matrix. The 
distance between each pair of test inputs is important. For example, the test input#1 
takes branch A and branch B. The test input#2 takes branch B and branch C. The 
test input#3 takes branch C and branch D. The test input#1 is similar to test input#2 
by taking branch B, and test input#2 is similar to test input#3 by taking branch C. 
However, the test input#1 and #3 are dissimilar. Therefore, the similarity matrix will 
be beneficial to take care of this situation.

We utilize the Euclidean distance to compute the distance between each pair 
of test inputs (line#29). For instance, we compute the distance between (input#1, 
input#2), (input#1, input#3), (input#2, input#3) and so on. Since the distance of 
(input#1, input#2) equals to the distance of (input#2, input#1), we do not calculate 
the distance twice (line#30). The below equation shows an example of the Euclidean 
distance for input#1 and input#2 from Table 1.

Table 2 shows an example of the output result (the similarity matrix) of the values 
shown in Table 1. The input of this step is the 2D array (Traces) generated from the 
Branch Traces Generator step and the number of test inputs. The output of this step 
is a matrix with the size of ( number _ of _ test _ inputs )2.

EuclideanDist(input #1, input #2) =
√

(3e6 − 0)2 + (4e6 − 291)2 + (4e6 − 3e4)2 + (0 − 3e4)2 ≈ 6e6

Table 1  An example of the output of branch traces generator step for three test inputs. The number of 
test inputs is 1024. The number of branches in a program under test is four. The value represents how 
many times a branch executes

Input# Branch#1 Branch#2 Branch#3 Branch#4

1 3e6 4e6 4e6 0
2 0 291 3e4 3e4
3 0 0 98 3e4
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5.3  Buckets constructor

The previous step generates the similarity matrix representing a complete undi-
rected graph. Each node represents a test input, and the edges’ weight represents 
the distance between nodes. The distance represents how similar one test input is 
to the others in terms of its control flow paths.

5.3.1  Minimum spanning tree (MST)

Utilizing the MST is beneficial to select similar test inputs. We use Kruskal’s 
algorithm since it builds the MST by sorting the edges’ weights (distances) and 
adds nodes based on the smallest weight of edges (line#43,50). This guarantees 
that the generated MST at any given time has edges with the lowest weight. Note 
that the smallest edge’s weight provides the most similar pair of test inputs.

As shown in Table  2, the edge’s weight between Input#1 and Input#2 is 
6384314.5 whereas the edge’s weight between Input#2 and Input#3 is 29903.4. 
Since the edges’ weights are ordered, the algorithm will add first the edge 
between Input#2 and Input#3 to the MST. Note, Table 1 shows Input#2 is more 
similar to Input#3 than to Input#1 (e.g., not executing Branch#1 and executing 
Branch#4 for 3e4 times).

5.3.2  Connected components

Since Kruskal algorithm builds the MST by adding the smallest edge’s weight in 
each iteration, there might be several unconnected components. At the first itera-
tion, for example, it might add the edge between node#1 and node#3. In the sec-
ond iteration, it might add the edge between node#2 and node#4. There might not 
be an edge between node#1 and node#2; or an edge between node#3 and node#2. 
There might not be an edge between node#1 and node#4; or an edge between 
node#3 and node#4. Thus, there are two unconnected components such that 
node#1 and node#3 are similar but they are different from node#2 and node#4 at 
this iteration of building the MST.

Therefore, at every iteration of adding a new edge to the MST, we examine 
if it has connected components equal to the warp size because these connected 
components represent test inputs that are similar in their control flow path. 
They should be executed in the same warp. If the MST has a number of con-
nected components more than the warp size, we sort the connected components 

Table 2  Similarity matrix 
representing the distance 
between a pair of test inputs for 
Table 1

Test input Input#1 Input#2 Input#3

Input#1 0 6384314.535 6403133.296
Input#2 0 0 29903.41594
Input#3 0 0 0
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by their edges’ weights and use only the first warp size connected components 
(line#44,45).

5.3.3  Buckets

When finding and sorting the connected components in the MST, we store the 
first warp size nodes in a bucket (line#46). Then, we remove them from the graph 
(line#47). We repeat the steps of building MST, checking the number of connected 
components, putting nodes into buckets, and removing nodes from the complete 
graph until the graph is empty (line#48,35). Note that when the number of connected 
components is bigger than the warp size, the excess nodes will not be removed from 
the graph; instead; they will be used in the second iteration of the algorithm.

In the end, we have a list of buckets such that the number of buckets is the num-
ber of test inputs divided by the warp size (line#36). Each bucket contains IDs of 
test inputs that are grouped based on their similarity to the branch traces. An ID of a 
test input helps to find the actual data of each test input. Thus, we use these buckets 
to create ATI (line#40).

6  Evaluation

To reduce the number of inactive threads per warp when testing a program on a 
GPU, we consider the distance between different test inputs based on their control 
flow divergences. Test inputs that have similar control flow paths will have a small 
distance in terms of branches. The purpose of our algorithm is to arrange test inputs 
by grouping similar test inputs based on their branch distance.

The evaluation of our algorithm is to answer the following Research Questions 
(RQs): 

1. RQ1: Is our algorithm valid and correct in clustering similar test inputs based on 
their control flow paths?

2. RQ2: Is our algorithm able to speed up the test execution on a GPU machine? 
(comparing the execution time of ATI and Random Test Inputs (RTI) with respect 
to a sequential version.)

3. RQ3: Is our algorithm able to reduce the branch divergence? (measuring the 
effectiveness of the approach by using (1) warp execution efficiency, (2) warp 
execution non-predicated efficiency, and (3) stall memory dependency?

6.1  Experimental design

The experiment aims to evaluate our algorithm that arranges test inputs of a pro-
gram based on their execution path (branch traces). We examine if our approach 
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correctly arranges a set of test inputs, decreases the execution time on GPUs com-
pared to CPUs, and reduces branch divergence. All the implementation and results 
are available on our GitHub repository text.1

The first research question (RQ1) is to validate that our algorithm arranges test 
inputs as expected. In other words, does our algorithm sort test inputs as excepted? 
Does our algorithm lose any test inputs while sorting the test inputs? Does our algo-
rithm duplicate any test inputs?

To answer RQ1, we need three sets: (1) inputs set, (2) expected results set, and 
(3) actual results set. Each set has the same 1024 test inputs (see Sect. 6.3) and is 
divided into 32 groups. Each group contains 32 test inputs. The first set has unar-
ranged test inputs. The second set has well-arranged test inputs. The third set is cre-
ated by applying our algorithm to the first set and compared with the second set.

Since the arrangement is based on the control flow paths of test inputs, we can-
not know the well-arranged test inputs in advance. To guarantee the arrangement, 
we will duplicate test inputs. We will construct the 1024 test inputs as follows: 
(1) generate 32 test inputs (see Sect. 6.3 for how we generate test inputs) and (2) 
repeat each test input 32 times. The first set (inputs set) has each group with differ-
ent test inputs, which guarantees that this set is not well arranged. In the second set 
(expected results set), every group will have the same test inputs and consider well-
arranged test inputs. Then, we use our algorithm to arrange the first set and build 
the third set (actual results set). We can conclude that our algorithm is capable of 
arranging the set as expected by comparing the actual results set with the expected 
results set.

To answer the second and third research questions, we select six different bench-
marks and generate two different sets of test inputs (Random and Arranged) for each 
benchmark. RTI is generated randomly while ATI is generated by using our algo-
rithm. For each benchmark, we implement a test driver to test a benchmark on a 
CPU and GPU machine. For a GPU machine, we run the test driver with ATI and 
RTI.

For CPU, we use Intel®Xeon®Gold 6140 Processor and implement a test suite 
in C. We use clock_gettime() [57] to measure the execution time in seconds. For a 
GPU machine, we use NVIDIA Volta architecture Tesla V100. We implement the 
test driver by using CUDA that is capable of programming multithreaded GPUs and 
scales transparently to hundreds of cores [58]. We use cudaEventCreate() [59] to 
calculate the execution time in seconds.

6.2  Benchmark

A GPU is applicable to handle data-parallel computations such that it executes the 
same program on many data elements in parallel [60]. In data-parallel processing, 
we map data elements to parallel processing threads. To speed up the computations, 

1 https:// github. com/ tbagi es/ GPU- Branc hDive rgence.

https://github.com/tbagies/GPU-BranchDivergence
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many applications processing large data sets can use a data-parallel programming 
model such as CUDA in GPUs. Running program testing in parallel matches the 
concept of data-parallel processing. To test a program, we need to execute it with 
different test inputs several times. Therefore, GPUs are suitable to run testing in par-
allel such that each test input will be executed by a thread running concurrently.

Although some existing tools create a test suite for a specific programming lan-
guage, currently no tool can automatically generate a test suite in a data-parallel pro-
gramming model for a program implemented in C to be executed on a GPU. There-
fore, we design our experiment similar to the state of the art [15] and use CUDA that 
is a widely used programming model in GPUs to implement a test suite for a list of 
benchmarks written in C.

CUDA does not support some C standard libraries [60] and recursive function. 
We cannot execute a program testing that deals with string or reads from a file and 
writes to a file. We must not modify the source code of a program under test; we 
must test it as it is provided. Unfortunately, these limitations do not allow us to use 
large-scale applications. All the C real-world applications rely heavily on C standard 
libraries (String, read from a file, Math library, etc.). Thus, we could not test our 
algorithm with large-scale applications.

We consider these limitations and create a set of criteria to choose benchmarks. 
The first criterion is that the source code of a tested program does not rely on the C 
standard libraries such as string comparison. The second criterion is that inputs of a 
program should be provided by its developer or easy to generate automatically. The 
last criterion is that selected programs are different in their functions, input types, 
number of inputs, and source code structure such as control flow. Table 3 summa-
rizes the list of selected benchmarks based on our criteria. Each benchmark includes 
several programs that we consider as functions under test (FUT).

Polybench is a benchmark suite of numerical computations with static control 
flow in various application domains such as linear algebra computations and data 
mining. Its source code is available in [61] and it involves nested loops and handles 
arrays with a different number of dimensions and computations. We choose two pro-
grams from different domains based on our criteria. In addition, we use EEMBC and 
select the seven functions used by [1, 15].

We use GitHub which is a popular repository and an easy way to obtain source 
code [62]. We choose Image Manipulation Application (IMA) since it has many 
functions, many if statements, and a combination of "while" and "for" loops [63]. 
Also, we choose C-Sorting Library (SortLib) [64] to test our approach on an existing 
library and evaluate the benefit of our approach to create the unit testing for libraries. 
Additionally, we use two different benchmarks related to well-known algorithms: 
graph algorithm (GAlg) [65] and dynamic programming (DynProg) algorithms [66]. 
We test only the functions that satisfy our criteria from these benchmarks.

6.3  Test inputs

We use the warp size (32 in Tesla V100) to specify the number of threads (i.e., we 
can have the minimum of 2n(n >= 5) . Since, in this GPU machine, the maximum 
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number of threads per block is 1024 [56], the minimum number of test inputs could 
be 1024 test inputs. Therefore, we use 1024 test inputs for each benchmark and dis-
tribute the 1024 test inputs in several blocks based on the warp size (32 threads/
warp). As a result, the number of threads per block is 32, while the number of blocks 
is the number of test inputs (1024) divided by the number of threads per warp (32).

To generate a 1024 RTI, we use test inputs provided by a developer of each 
selected benchmark. If a developer does not provide test inputs, we look at the speci-
fication of each program to generate the inputs. Table 4 shows how we generate the 
test inputs for each selected benchmark. The output of this step is six sets of RTI 
(i.e., each benchmark has its RTI).

To produce ATI for each selected benchmark, we apply our algorithm to each 
RTI. The algorithm groups the 32 similar control flow paths of test inputs within 
a bucket (block on a GPU machine). There are 1024 test inputs. Our approach will 
produce 32 buckets executed within 32 blocks in parallel. Each has 32 test inputs 
executed within 32 threads per warp in parallel. The output of this step is ATI for 
each selected benchmark.

Table 4  Generating random test input set for each benchmark

Benchmark Steps

IMA (1) Selects images with different size from a local directory
(2) Specifies FUT
(3) Generates random numbers (inputs of FUT),e.g., the amount of rotation

SortLib (1) Generates random numbers of different array sizes
(2) Generates random numbers to be stored in the array
(3) Specifies FUT

Polybench (1) Generates random numbers of different array sizes
(2) Uses functions provided by the developer of the Polybench to generate floating point 

numbers and stored them in the array
(3) Specifies FUT

DynProg (1) Generates random numbers of different array sizes
(2) Specifies FUT,
(3) Generates random data to be stored in an array data might be a letter or number depends 

on FUT
GAlg (1) Generates different types of graphs with different number of nodes and edges by using 

Python networkx: Complete, Dense, undirected, and directed graph
(2) Specifies FUT

EEMBC (1) Generates the input from the code provided by the developer of EEMBC
(2) Specifies FUT
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6.4  Test driver

For each selected benchmark, we implement two versions of a test driver. The first 
version is the sequential version to run the test on a CPU machine by using C lan-
guage. The second version is to execute the test on a GPU machine in parallel by 
using CUDA.

The test driver has three parts: (1) a data structure to store test inputs and output 
results, (2) a function reader to read test inputs from a file, and (3) a function to 
launch the unit testing. The first and second parts are the same in the two versions 
(CPU and GPU).

6.4.1  Data structure

To simplify reading the test case inputs, we use Array of Struct (AoS) to store each 
input such that each member in the struct represents a data of a test input (similar 
to [1]). If, for example, a program receives an integer number as an input, we create 
a struct that has these input types (Listing 2 line#2–4). Also, we add the char vari-
able (action) to indicate which FUT will be executed (Listing 2 line#5). In the main 
method, we create an array of size equal to the number of test inputs of this struct 
(Listing 2 line#21).

Similarly, we define and declare AoS for the output values (Listing 2 line#8–10, 
and line#22 respectively). We have two AoS for input and output similar to [1]. This 
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way reduces the amount of data that will be transferred from the device to the host. 
For example, we will only transfer the array result from the device to the host mem-
ory instead of transferring all values of the variables from input and output struct.

6.4.2  Test inputs reader

To read the inputs’ values, we implement a function called readingInput (Listing 2 
line#12). It receives the inputData and outputData as arguments. Then, it reads an 
input file that has test inputs’ values. Next, it stores the values of each test input in 
the inputData as well as outputData.

6.4.3  Launch test inputs

This is the main different part between the sequential (on a CPU machine) and the 
parallel (on a GPU machine) versions. For the sequential version, we add a loop 
iterating on the number of test case inputs. Inside the loop, we invoke all functions 
under test. Listing 3 (line#2–9) shows an example of a test driver for functionA() 
and functionB().

For the parallel (GPU) version, we specify the number of threads per block, as 
well as the number of blocks per grid (Listing 4 line#2–3). As discussed above, the 
number of threads is 32 (warp size) per block. Then, we allocate data in the device 
memory and transfer the data from the host memory to the device memory (List-
ing 4 line#6–7). After that, we invoke the kernel with a specific number of threads 
and blocks, as well as pass the test case inputs to the kernel (Listing 4 line#8). The 
kernel executes all functions under test in a GPU and store the results in the AoS 
of OutputData (Listing 4 line#15,18). Finally, we transfer the output data from the 
device to the host (Listing 4 line#9).
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Unlike the sequential version, there is no "for loop" in the CUDA version. The 
kernel will distribute the test case inputs in different threads automatically according 
to the number of blocks and threads (Listing 4 line#12). The first 32 test case inputs 
will be assigned to 32 threads in a block. The second 32 test case inputs will be 
assigned to another 32 threads in a different block and so on. Each thread will have 
an ID number indicating which test input will be executed. Note that a group of 32 
threads will be executed in a warp.

6.5  Profiling

To measure the effectiveness of our approach, we use Nsight Compute CLI which is 
a profiler tool introduced by NVIDIA [67]. It provides several metrics for the opti-
mization of CUDA applications.

The branch divergence is influenced by the number of inactive threads per warp. 
To measure the efficiency of a warp, Nsight Compute CLI provides two important 
metrics (warp execution efficiency and warp non-predicated execution efficiency). In 
GPUs, many stall reasons cause a warp to be inactive—this is different from active 
and inactive threads. The most related stall reason to our experiment is stall memory 
dependency (provided by Nsight Compute CLI) because all selected benchmarks 
have arrays. The high percentage of stall memory dependency has a negative impact 
on the performance of a GPU application. Table 5 shows the definition of these met-
rics based on [68, 69].

6.6  Static code analysis

To collect some statistical data and analyze the code of each benchmark stati-
cally, we use Sonargraph-Architect a general-purpose static analysis tool that can 
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be described as the swiss army knife for architects, quality analysts, and developers 
[70]. Table 6 lists the metrics that we used. We only consider the measurement that 
has different values among the selected benchmarks.

7  Results

We execute each test driver of the selected benchmarks more than 20 times and 
compute the average of the execution times for sequential version with RTI, parallel 
with RTI, and parallel with ATI. We also run Nsight Compute CLI for parallel ver-
sions for the two sets.

We compare RTI with ATI for each selected benchmark by using the Linux com-
mand (diff). ATI is not missing a test input when generated by our algorithm (i.e., 
our algorithm does not delete or add new test inputs to ATI). Both sets have the 
same test inputs, while they are different in the order of test inputs.

Table 5  Metrics collected from Nsight compute CLI

Nsight compute CLI Definition

Warp execution efficiency Ratio of the average active threads per warp to the maximum number of 
threads per warp supported on a multiprocessor

Warp non-predicated execu-
tion efficiency

Ratio of the average active threads per warp executing non-predicated 
instructions to the maximum number of threads per warp supported on 
a multiprocessor expressed as percentage

Stall memory dependency Percentage of stalls occurring because a memory operation cannot be 
performed due to the required resources not being available or fully 
utilized, or because too many requests of a given type are outstanding

Table 6  Metrics used for code analysis and statistical data

Category Name Description

Code analysis Number of duplicated code lines 
(NDCL)

Number of duplicated lines in duplicated 
code blocks. The duplicated lines of 
each code block are calculated as the 
sum of involved occurrences excluding 
the largest, which is treated as the 
reference

Average block nesting depth (ABND) Weighted average of nesting depth
Size Lines of code (LOC) Lines of code excluding blank and com-

ment lines
Number of statements (NOS) Counts all statements
Source element count (SEC) Number of programming elements (i.e., 

types, fields, methods, functions, etc.) 
plus number of statements

Thomas J.McCabe Average Complexity (AC) Weighted average modified cyclomatic 
complexity
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We validate the output results from the test driver for the two versions (sequential 
and parallel). The output results are the same for the two versions and the two test 
inputs sets. However, when a program use floating-point, there are small differences 
between GPU results and CPU results. A GPU hardware architecture handles float-
ing-point differently from CPU hardware architecture [71].

The floating-point issue appears only in five programs of Polybench. Although 
IMA has floating-point variables, the processed images from the CPU version and 
GPU version are identical. Since the other benchmarks deal with integer numbers 
and strings, the floating-point issue does not impact their output results.

7.1  RQ1: validation and correctness

We use Polybench (the first selected benchmark) and its test inputs to build two sets: 
(1) best arranged test inputs (BestSet) and (2) badly arranged test inputs (BadSet). 
BestSet has the same 32 test inputs per warp, so each thread executes the same state-
ment (no branch divergence per warp). BadSet includes different 32 test inputs per 
warp, so there might be a branch divergence. Then, we apply our algorithm to build 
ATI from BadSet. After that, we compare ATI with BestSet.

As shown in Table 7, our algorithm generated the expected arranged test set when 
we compare the generated ATI with BestSet. The algorithm creates a similar set to 
BestSet such that they have the same 32 test inputs in a group, but the order of these 
groups is different. If, for example, BestSet has test#1-test#32 in warp#1, our algo-
rithm may put these test inputs in warp#2.

7.2  RQ2: execution time

Table 8 shows the execution time (including data transferring) in seconds for each 
selected benchmark. The first column is the benchmark name. The second column 
is the execution time in seconds of a test driver on the CPU version with RTI. The 
third column is the execution time in seconds of the test driver on the GPU with 

Table 7  Part of BestSet, BadSet, 
and ATI of Polybench

Test input# BestSet BadSet Arranged test input 
produced by our 
algorithm

0 0 434 7 0 434 7 2 151 151
15 0 434 7 9 422 153 2 151 151
31 0 434 7 2 151 151 2 151 151
32 9 422 153 0 434 7 0 434 7
47 9 422 153 9 422 153 0 434 7
63 9 422 153 2 151 151 0 434 7
64 2 151 151 0 434 7 9 422 153
79 2 151 151 9 422 153 9 422 153
95 2 151 151 2 151 151 9 422 153
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RTI. The last column is the execution time in seconds of a test driver on the GPU 
version with ATI (generated by our approach).

Running test case inputs on the GPU machine is faster than on the CPU machine 
for all selected programs with RTI (Table 8 column#2 and #3). When we apply our 
approach to arrange RTI, the execution time of a test driver for four selected bench-
marks is faster than RTI on the GPU machine (Table 8 column#3 and #4).

Although our algorithm arranged the test inputs as excepted, the speedup ratio 
was affected by a couple of other factors than branch divergence. Table  9 and 
Table 10 show four reasons for the various speedup achieved between the selected 
benchmarks: (1) The amount of data transferring between host and device, (2) dif-
ferent control flow paths (if statements and loops), (3) warp load imbalance, and (4) 
cache locality.

Table 8  Execution time of test 
driver for the six benchmarks 
in seconds (sec) by using RTI 
and ATI

Benchmark CPU time (sec) GPU time (sec) GPU time (sec)
RTI RTI ATI

IMA 24.5 19.8 6.4
SortLib 56.0 26.5 15.7
Polybench 89.2 55.2 49.1
DynProg 40.3 37.0 49.5
GAlg 195.8 182.3 257.8
EEMBC 0.023 0.007 0.006

Table 9  Data transferring affect the performance of our algorithm

Benchmark Datatype #Arguments #Arrays Arrays’ sizes

IMA Float, int 11 3
SortLib Int 3 1 Different
Polybench Float, int 12 6 Sizes
DynProg Int, char 10 6
GAlgo Double, int 10 5
EEMBC Short, char, int 35 2 Fixed sizes (215)

Table 10  Reasons affect the 
performance of our algorithm

Benchmark Warp load imbalance Cache locality Control flow

IMA No No If and
SortLib No Yes Switch
EEMBC No Yes Statements
Polybench No Yes
DynProg Different complexity Yes Loops
GAlgo Different complexity Yes
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The first factor is data transfer. As shown in Table  9, the datatype, number of 
arguments, number of arrays, and sizes of arrays are different from one benchmark 
to another. This provides one explanation of why one benchmark gains a higher 
speedup ratio than another benchmark. As shown in Fig. 4a, the speedup ratio of 
the ATI of IMA, SortLib, and EEMBC are 3.8, 3.6, and 3.8, respectively. On the 
contrary, the speedup ratio of Polybench, DynProg, and GAlgo are 1.8, 0.8, 0.4, 
respectively. Polybench, DynProg, and GAlgo have at least five arrays transferred 
from host to device, whereas IMA, SortLib, and EEMBC have at most three arrays 
transferred from host to device. Therefore, data transfer is one reason that affects the 
execution time when testing on GPUs.

The second factor is a control flow path of a source code. For example, most of 
the branches of IMA and SortLib are produced by if statements and switch state-
ments rather than loops (Table 10). Thus, They achieve a better speedup ratio by our 
algorithm than other benchmarks (Fig. 4a). Although EEMBC has a bigger number 
of if statements than loops, the difference in the speedup ratio between ATI and RTI 
is not significant because most of the if statements have one line of code.

The third factor is warp load imbalance, which occurs when one warp needs time 
to execute while another warp finishes its execution. Table 8 shows that DynProg 
and GAlg are slower with the ATI set than the RTI set because they have differ-
ent functions with different time complexity (Table  10). In DynProg, for exam-
ple, the time complexity of some of these functions is polynomial (e.g., Fibonacci 
Numbers). In contrast, the time complexity of some functions is exponential (e.g., 
Edit Distance and Knapsack). In the GAlg benchmark, Dijkstra’s algorithm’s time 
complexity is O(E logV) , whereas the time complexity of Floyd Warshall is O(V3) . 
This leads to a load imbalance problem. For instance, our algorithm assigns one 
warp with 32 test inputs invoking the Edit Distance function, while it assigns 32 test 
inputs calling Fibonacci Numbers function to another warp. With RTI, one warp 
could have a test input invoking Edit Distance and another test input calling Fibo-
nacci Numbers. Different warps may execute different functions with different exe-
cution times (polynomial and exponential). As a result, there is no overhead on one 
warp performing a function with exponential time in RTI.

With regard to static code analysis, Table 11 shows statistical data results for each 
benchmark. Our algorithm performs well on the IMA benchmark with the highest 
LOC, NOS, SEC, and AC, among other benchmarks. Therefore, our algorithm will 
help speed up the testing execution when a program under test has many LOC, NOS, 
SEC, and AC.

7.3  RQ3: effectiveness

The achieved occupancy of all used benchmarks is 100% for both ATI and RTI. We 
have 1024 test inputs for a block. A block has up to 32 warps. These 32 warps exe-
cute in parallel.

Using ATI generated by our algorithm significantly improves the warp execution 
efficiency and warp non-predicated execution efficiency for all selected benchmarks 
(Fig. 4b, c). On the other hand, ATI increases the percentage of the stall memory 
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Fig. 4  Speedup ratio and the three Nsight Compute CLI metrics
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dependency (Fig. 4d) for all benchmarks, which negatively impacts the performance 
of some benchmarks.

7.3.1  Warp execution efficiency

With ATI, there is a significant improvement with respect to the ratio of the number 
of active threads per warp to the total number of threads per warp in all benchmarks, 
which ranges between 6.13 and 31.98 threads/warp. RTI has poor warp execution 
efficiency which ranges between 1.4 and 4.81 threads/warp. As a result, our algo-
rithm reduces the number of inactive threads per warp, which is the main goal of 
this paper.

The ratio of the active threads per warp is different from one benchmark to 
another because of two factors. The first factor is the branches produced by loops. 
Even though our algorithm tries to find similar control flow paths between different 
test inputs, there might be loops that iterate based on array size. For example, if a 
test inputs set has 32 test inputs with array size ranges between 2 and 99 and another 
test inputs with array size ranges between 100 and 500, our algorithm will put the 
first 32 test inputs in a warp, and the second one in a different warp. The difference 
in the number of iterations (branches) between threads in the first warp does not 
exceed 97 iterations. For the second warp, the difference in the number of iterations 
between threads does not go beyond 400 iterations. This increases the number of 
branches in one warp versus another warp. Consequently, it reduces the number of 
active threads per warp. This case appears in all benchmarks except EEMBC. As 
shown in Table 9, EEMBC has one array with a fixed length (215). This gives a rea-
son why EEMBC achieves the highest ratio of almost 32 threads/warp.

The second factor affecting the warp execution efficiency negatively is branches 
produced by if statements. If a program under test has a lot of if statements, the warp 
execution efficiency will decrease. Thus, our algorithm will improve the execution 
time of this program and the warp execution efficiency. For example, IMA has many 
if statements in which our algorithm improves its execution time. On the other hand, 
GAlg benchmark has the fewest number of if statements than the other benchmarks. 

Table 11  Statistical data of the 
selected benchmarks gathered 
by using the metrics described 
in Table 6

NDCL Number of duplicated code lines, ABND average block nest-
ing depth, LOC :lines of code, NOS Number of statements, SEC 
Source element coun, AC Average complexity

Benchmark NDCL ABND LOC NOS SEC AC

IMA 91 2.91 6,180 4,750 5217 14.86
SortLib 0 2.23 453 375 408 4.58
Polybench 0 2.41 706 530 590 5.14
DynProg 0 2.76 450 358 393 7.51
GAlgo 0 3.3 266 213 243 5.44
EEMBC 119 2.75 938 561 665 12.18
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Most of its branches are produced by loops. Thus, the execution time of ATI of 
GAlg is not improved. As a result, our algorithm will be beneficial when a program 
under test has many if statements.

7.3.2  Warp execution non‑predicated efficiency

With ATI, Fig.  4c shows a significant improvement in warp execution non-predi-
cated efficiency which is the percentage of the ratio of active threads executed non-
predicated instructions to the total number of executed instructions per warp. Hav-
ing similar control flow paths of different test inputs increase the number of active 
threads executing the same instructions at the same time in a warp. For example, 
if there are 64 test inputs half of them execute branch A and half of them execute 
branch B, our algorithm will put the 32 test inputs executing branch A in a warp 
whereas the second 32 test inputs executing branch B will be in another warp. As a 
result, the number of inactive threads is reduced for non-predicated instructions.

EEMBC has the highest percentage of warp non-predicated execution efficiency. 
Although it has many if statements, most of them have only one expression and 
there is no nested if statement. In addition, most of the test inputs provided by the 
developer for each function under test execute the same if parts. From the generated 
branch traces (the first step of our algorithm), the distance between one test input to 
another is zero for 85% of the branches in average. Additionally, EEMBC has loops 
with the same number of iterations for every test input as the developer specifies the 
maximum size of the array as a constant. As a result, there is not a huge difference 
between RTI and ATI for EEMBC in terms of their execution times.

For the other benchmarks, the presence of loops that produce branches affects the 
warp non-predicated efficiency as each test input iterates with a different number of 
iterations as we discussed previously.

7.3.3  Stall memory dependency

Since all benchmarks have arrays, the most stall reasons could be related to memory 
dependency. Array size affects the memory access pattern (cache locality) in a GPU 
machine because the amount of cache is smaller than in regular CPUs. Figure 4d 
shows that five benchmarks have more than 50% stall memory dependency. The per-
centage increases with a generated arranged set because the algorithm will put test 
inputs with a large array size (e.g., 500–550) in one warp whereas it will put test 
inputs with small array size (e.g., 10–50) in another warp. Thus, the memory access 
pattern and memory coalescing will affect the first warp since all test inputs in this 
warp have a bigger array size than the second set of test inputs.

The lowest stall memory dependency is for IMA. Compared with the other bench-
marks, IMA has the most number of LOC (Table 11) making stall instruction fetch 
to be 10%. Other benchmarks have less than 1% stall instruction fetch. Also, the 
array size of the majority of IMA is less than the array size in the other benchmarks.
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8  Discussions

To make an adequate unit test to catch bugs, we may invoke a function thousands 
of times with different inputs. The different test inputs are considered representative 
tests and relevant to a program under test. The restriction of 32 threads/warp in a 
GPU machine provides an opportunity to give each function under test batches of 32 
test inputs.

The time complexity of our algorithm is a polynomial time in terms of number 
of test inputs (n) and number of branches (b). For the traces generator step, the time 
complexity is O(nb). The time complexity of the similarity matrix step is O(n2) . In a 
complete graph, the number of edges (e) is as following: e = n(n−1)

2
 . The time com-

plexity of buckets constructor step has the following: 1) for MST O(e log n) , 2) for 
connected components O(n + e) , and 3) for reading data from buckets and storing in 
ATI O(n). As a result, the overall time complexity of our algorithm is dominated by 
O(n2 log n) , which is scalable.

One may argue that our parallelization may introduce "test-order dependencies" 
in which one iteration may impact values used by other iterations. We parallelize 
the test execution in an isolation manner such that each thread has its input data (no 
shared data). If a function needs to be executed after another function, we test them 
in the same order.

The limitations of CUDA (e.g., not supporting String and read file) did not 
allow us to run our experiment on real large-scale applications. We believe these 
limitations could be resolved in the future by adding the C libraries for CUDA 
applications.

Our proposed approach could be applied to multiple program languages. For 
example, a test suite could be implemented by using CUDA Python to test Python 
code and CUDA Jave to test Java code.

The proposed algorithm could be improved to consider the warp imbalance prob-
lem (e.g., heavy tasks will be distributed to different warps instead of one warp). 
The algorithm could be further improved to determine whether it should distribute 
test inputs with branch divergence or warp load imbalance depending on the control 
flow path under test. Since our algorithm is related to the clustering problem, the 
algorithm might be further improved for the clone detection problem.

In our experiment, we use NVIDIA Volta architecture Tesla V100 that supports 
the independent thread scheduling feature. This feature determines how to group 
active threads from the same warp together. Threads can diverge and reconverge 
at sub-warp granularity, while the convergence optimizer in Volta will still group 
together threads which are executing the same code and run them in parallel for 
maximum efficiency. Note that execution is still SIMT, retaining the execution effi-
ciency of previous architectures [72]. As a result, the speedup ratios (Fig. 4a) are not 
significant although our algorithm reduces the number of inactive threads per warp 
(Fig. 4b, c).
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All the implementations and instructions of how to apply our algorithm for prac-
titioners are available on our GitHub repository text.2

9  Threats to validity

9.1  Conclusion validity

Our experiment has a small number of benchmarks, which leads to low statistical 
power and tests. Due to the limitation of CUDA, which does not support some of C 
standard libraries such as String, we were not able to use any arbitrary benchmarks. 
For example, we could not test programs in the SIR-C [73] benchmark since all of 
these programs use a C standard library and read and write to a file. We believe this 
limitation can be resolved in the future by implementing these C standard libraries 
for CUDA programs.

9.2  Internal validity

Although we use only six benchmarks, they vary in different ways. We use EEMBC 
benchmark used by [1, 15]. We use Polybench, which is widely used in high-perfor-
mance computing communities. We include four benchmarks from GitHub to add 
other types of program structure different from EEMBC and Polybench. We search 
for source code that is well commented and easy to understand.

9.3  Construct validity

In our experiments, we use AoS and CUDA similar to [15]. In [74], they designed 
the input and output data as AoS and showed this design was better than Struct of 
Arrays and parallel arrays of inputs and outputs. Also, they showed that CUDA is 
better than Open-MP Offloading.

9.4  External validity

We could not study our algorithm with C real large-scale applications since all C 
real-world applications use C standard libraries. This limits the ability to generalize 
the results beyond the experiment setting. For example, in IMA (a real small-scale 
application in C), we only test functions that do not use unsupported C standard 
libraries by CUDA.

2 https:// github. com/ tbagi es/ GPU- Branc hDive rgence.

https://github.com/tbagies/GPU-BranchDivergence
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Some selected benchmarks do not have test inputs provided by developers (e.g., 
GAlg [65]). We generate their test inputs automatically such that test inputs cover all 
functions as well as different cases. For example, we generate different graphs such 
as an undirected graph, directed graph, dense graph and complete graph for GAlg.

9.5  Portability validity

We did our algorithm on a specific platform (NVIDIA). We specified the warp 
size and number of threads per warp with respect to NVIDIA specification. If you 
move to different architecture, you may need some fine-tuning based on the cho-
sen architecture specifications, such as changing the warp size.

9.6  Reproducibility validity

Our algorithm should not be repeated and reproduce new traces or a similarity 
matrix whenever a program under test changes. If, for example, we have already 
run the testing with an ATI set generated from our algorithm based on traces and 
similarity matrix of an old version of the program under test. Then, the program 
changes and has a new version. The old ATI set may not work well as it is built 
based on the old version. In other words, the generated ATI set might need to 
be rearranged. However, we do not want to repeat the whole execution of our 
algorithm (e.g., collecting branch traces and producing a new similarity matrix). 
Instead, we could use some regression testing techniques [75, 76] in which we 
eliminate the test inputs that were not affected by the change. The remaining test 
inputs that were affected by the change could be rearranged based on a new step 
that should be added to our algorithm (we consider this as future work).

10  Conclusion and future work

When parallelizing test execution on a GPU, each test input is executed by a 
thread and may have a different control flow path, which leads to divergent 
instructions between threads. Some threads are inactive, waiting for other threads 
to finish their execution. Therefore, the branch divergence among threads in a 
warp increases the overall test execution time. We propose an algorithm that 
arranges the test inputs concerning their control flow path to reduce the branch 
divergence when executing tests on GPUs.

Our approach helps in grouping similar control flow paths of test case inputs 
to be executed in 32 threads per warp. It shows that arranging the test case inputs 
yields faster execution time of four of six selected benchmarks. Also, it improves 
the warp execution efficiency on the GPU machine for all tested benchmarks.

Our approach is the first step to build a set of ATI. A direction for future work 
would be utilizing some regression testing techniques to re-arrange test inputs 
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that are affected by adding a new function or deleting an existing function. In 
addition, we would address the load imbalance problem when a program under 
test has different functions with different time complexities (exponential, polyno-
mial), or has test inputs with small and large array sizes.
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